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Basic Definitions

The University of Manchester

e Natural numbers: N={0,1,2,3,...} or {1,2,3,...},
choice depends on convention.

e Positive naturals: N* = {1,2,3,...}
e Integers: Z ={...,—-2,—-1,0,1,2,...}
o Positive integers: Z* = {1,2,3,...}
e Rational numbers: Q = {]5) |peZ,qeZ\ {O}}

e Positive rationals: Q* = {¢ € Q| ¢ > 0}
e Real numbers: R = {z | —0c0 < z < o0}
e Positive reals: Rt = {z e R |z > 0}



Basic Definitions
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Set-Builder / Predicate Notation
Let a property ¢(z) and a set A
B={x¢€ A|¢(x)is true}
means “the subset of A whose members satisfy property ¢.”

e Positive rational numbers can be written like

The University of Manchester

Q" ={zeQ|z >0}, N={neZ|n>0}
o If X isasetandn € N, define

X" ={(z1,22,...,2,) |z, € X fori=1,...,n}.
e If m,n € N, define the set of m x n matrices over X:

men(X):{[ainaijEX, lfzgm,lﬁjgn}



Logical Connectives: Basic Laws
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Let ¢ and ¢ be logical statements (predicates). We have:

—(mp) =@ (negation),
© A 1 (conjunction/logical AND),
 V 9 (disjunction/logical OR),
o = 1 (implication),
¢ <= 1 (bi-conditional, equivalence).

Some equivalences:

=1 = oV, —(pAY)=-pV-) (DeMorgan),...



MR Quantifiers: V, 3
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Universal quantifier:

Vo € A, o(z) :forall z in A, p(x) holds.

Existential quantifier:

dz € A, p(x) :thereis at least one x € A with ¢(x).

Negation rules:

—(Vz € Ap(z)) = Iz € A-p(x),

~(3z € Ap(z)) = Vo € A-p(x).



Continuity and Uniform Continuity
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Continuity

Let I ¢ R be aninterval, f : I — R. We say f is continuous if

Veel, Ve>0,30>0,Vyel, |lzr—y|l<d=|f(z)— fly)] <e.

Uniform continuity

f is uniformly continuous if

Ve>0,30 >0, Ve,yel, lr—y|<d=|f(z)— fly)] <e.
Remark:

Uniform continuity is a stronger (global) condition: § must work
for all z, not depend on z.



e Sets
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Let A, B be sets.

Then
AUB={z|z e Aorx € B},

ANB={z|z € Aandz € B},
A\B={z|z € Aand x ¢ B}.

Power set:

Boolean algebra of subsets

PA) ={S|SCA} [PA) =21



o R

The University of Manchester

e Each element of P(A) is a subset of A (including () and A
itself).

e If A has n elements, then P(A) has 2" elements.

e Equipped with the operations of union (U), intersection (N),
and complement (), P(A) forms a Boolean algebra.

e The smallest element (zero) is ), and the greatest element
(unity) is A.



Mk Visualisation
The University of Manchester
Union of A and B

Intersection of A and B

o

Difference A minus B

Difference B minus A
Venn diagrams to illustrate union, intersection, difference.
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Ordered Pairs and Cartesian Product
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The ordered pair (a, b) is defined by the Kuratowski construction:

(CL, b) = {{a}? {a7 b}}

One checks (a,b) = (a',b ) iffa=a andb=1b.

Cartesian product:

Ax B={(a,b)|a €A, be B}
Cardinality (finite case): If |[A| = m, |B| = n, then
|Ax Bl =m-n.

More generally, for X", | X"| = | X|" for finite X.



Mskcied Function and Equality of Functions
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Let X,Y be sets. A function f : X — Y (X EN Y') is a subset

fCXXxY

such that
e Forevery z € X, there is a unique y € Y with (z,y) € f.

Two functions f,g: X — Y are equal, f = g, if
vz € X, f(z) = g(x).

sin? 2 4+ cos? z = 1 defines a function identically equal to constant
function 1(z) = 1, for domain R.



Composition of Functions

WFiX oY andg:Y - Z define
gof:X =2, (gof)(x)=g(f(z))
Associativity: If b : Z — W, then
ho(gof)=(hog)o f.
Let X = {a,b,c}, Y ={0,1}, Z = {w, x,y, z}. Define

f@)=0, fB) =1, f(&) =0, g(0)=w, g(1) = =

Then go f maps a — w, b +— z, c — w. You can draw arrow
diagrams: X LY % 7



)l Visualization
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Axiom of Set Equality:
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Axiom (Extensionality). Let X and Y be two sets. Then
X=Y < (XCYandY C X),

that is,

X=Y < (VzzeX=z€cY))and (Vz(z €Y =z € X)).

Interpretation: Two sets are equal if and only if they contain ex-
actly the same elements.

Example: Let A= {1,2,3}and B = {z € N |z < 4}.

Proof.

(1) Ifz € A, thenz € {1,2,3}, hence z <4 and z € B. Thus
ACB.

(2) fz € B,thenz <4andz € N, so z € {1,2,3} = A. Hence
B C A.

By the Axiom of Extensionality, A = B.



Identity Function and Its Property

Definition:

For any set X, the identity function is

idy : X — X, IdX(x)::v Ve € X.

Proposition:

For any function f : X — Y,
foidx = f, idy o f = f.
Proof.

Let z € X. By definition of composition:

(foidx)(x) = f(iddx(z)) = f(z), since idx(z) = z. Hence

foidxy = f.

Similarly, for the right composition:

(idy o f)(z) =idy(f(x)) = f(x), sinceidy(y) =y forally € Y.
Thusidy o f = f. O O

17



BB Injective, Surjective, Bijective
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Letf: X —Y.
e f is injective (one-to-one) if

Vay, 2 € X, f(z1) = f(22) = 21 = 22.
e fis surjective (onto) if
VyeY, Jxe X, f(x)=

e f is bijective if it is both injective and surjective.
Examples:
e idy is bijective.
e f(z) = 22 on R — R is not injective (two preimages);
e restrict to [0, c0), then it becomes injective (and bijective onto
[0, 00)).



Left Inverse, Right Inverse, and Relation
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Letf: X —>Y.
e Aleft inverse of f is a function ¢ : Y — X such that

go f=idx.
e Aright inverse of f is a function h: Y — X such that
foh=idy.

e If a function has both a left inverse and a right inverse, they
coincide and that common map is called the inverse f~!.

Proposition:

1. f has a left inverse < f is injective.

2. f has arightinverse < f is surjective.

3. fis bijective < f has a two-sided inverse.
Proofs: 7?7



3 Proof

(1) Left inverse < Injective.
(=) Assume there exists g : Y — X such thatgo f = idy. Let
f(x1) = f(x2). Applying g to both sides gives

9(f(z1)) = g(f(x2)) = idx(x1) = idx(z2) = 1 = x2.

Thus f is injective.
(<) Assume f is injective. For each y € im(f), there exists a
unique = € X such that f(z) = y. Defineg: Y — X by

(v) = xz, ify= f(x)forsomez € X,
I PP

where zy € X is fixed arbitrarily. Then forall z € X, ¢(f(z)) = =,
hence g o f = idx. Therefore, f has a left inverse.

20



Proof

(2) nght inverse < Surjective.
(=) Assume there exists h : Y — X such that f o h = idy. For
everyy €Y,

f(h(y)) =y,

so y is an image of f. Hence f is surjective.

(<) Assume f is surjective. Then for each y € Y there exists at
least one x € X such that f(x) = y. Choose one such z (using
the Axiom of Choice if necessary), and define h(y) = x. Then
f(h(y)) =yforally € Y,i.e. foh=idy. Thus his a right inverse
of f.

21



Proof
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(3) Bijective & Two-sided inverse.
(=) If f is bijective, it is both injective and surjective. From (1)
and (2) there exist g,h : Y — X suchthatg o f = idx and

foh = idy. But for a bijection, these must coincide (g = h = f~1).

Hence f~! satisfies both identities:
o f =idx, fofh=idy.
(<) If a function f has a two—sided inverse f~!, then f~1 o f =

idy (injectivity) and f o f~! = idy (surjectivity).
Therefore, f is bijective. [
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Uniqueness of Inverse and Composition
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Uniqueness of Inverse

If f has both left inverse g and right inverse h, then one shows
g = h. Thus the two-sided inverse is unique.

Theorem:

If f: X —Yandg:Y — Z are bijections, then g o f is bijective
and

(gof)y™=flog™h

Proof: ?7?7?

23



Proof
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Since f and g are bijections, each has an inverse function f~! :
Y - X and g~!: Z — Y satisfying:

flof=idx, fofl=idy, glog=idy, gog '=idz

Step 1: Show that g o [ is bijective.

Injectivity: Suppose (g o f)(x1) = (g o f)(x2). Then g(f(z1)) =
g(f(x2)). Since g is injective, it follows that f(z1) = f(x2). Apply-
ing injectivity of f, we get z1 = x5. Hence g o f is injective.
Surjectivity: Let z € Z. Since g is surjective, there exists y € Y
such that g(y) = z. Since f is surjective, there exists = € X such
that f(x) = y. Then

(go f)(z) =g(f(x)) =g(y) =

Thus every z € Z has a preimage in X; therefore, g o f is surjec-
tive.
Hence g o f is bijective.



Proof
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Step 2: Compute the inverse. We claim that (go f)™' = f~'o
g~ '. To verify this, check both compositions:
(a) Left composition:

(ftog o(gof) = flo(g tog)of = floidyof = f~lof =idx.
(b) Right composition:
(gof)o(ftog™) =go(fof "oy ! = goidyog ' = gog™" =idy.

Both compositions give the identity maps on X and Z, respec-
tively. Thus (f~! o g7!) is indeed the inverse of (g o f).
Conclusion:

(gof)t=flog™. O

25



Bundles, Projection, and Sections
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Let £ and M be sets, and let 7 : F — M be a surjection. We call
(E, 7, M) a bundle over M, and 7 the projection map.

A section is a (right) inverse map s : M — E such that
mos=idy.

Thus s “picks a point in each fiber” consistently.

26



Bundles, Projection, and Sections

The University of Manchester

For x € M, define the fiber
E,=nYz)={e € E|7(e) =z}

Then E is the disjoint union of its fibers:

E = |_| E,.

zeM

(Here | | means disjoint union.)

27



Visualization
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Picture of a fiber bundle

Math rep. of a fiber bundle
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Example: Annulus as a Bundle
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Take real numbers 0 < rg < r1. Define
E={(z,y) eR?|ro<2?+1y* <m}, M=]r,r],
and the projection
i E— M, m(z,y) = V22 + 12
Then (E,w, M) is a bundle. The fiber over r € [ro,r] is
By ={(z,y) [ 2* +y* =r?},

i.e. the circle of radius . The total space is an annulus. This is an
example of an I-bundle (interval-bundle) over a circle base.
A section would pick one point on each circle: e.g. define

s(r) = (r,0),

then n(s(r)) =r. 29



Visualization
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A function f : X — Y is bijective if and only if it has a two-sided
inverse; that is,

fis bijective <= dg:Y — X suchthat gof =idx and fog = idy.

Proof (=) Assume f is bijective. Then f is injective and surjec-
tive.
Existence of inverse function: For each y € Y, surjectivity en-
sures the existence of at least one x € X such that f(z) = y.
Injectivity guarantees that this z is unique. Hence, we can define
a well-defined function g : Y — X by assigning ¢g(y) = =z, where
flx) =y.
Now, for all x € X:

(9o f)(x) =g(f(z)) ==,

31
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Proof
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(fog)y) = flg(y) =y
Thus go f =idx and f o g = idy; ¢ is a two—sided inverse of f.

(<) Conversely, suppose there exists g : Y — X such that
gof=idx, fog=idy.
Injectivity: If f(xz1) = f(z2), apply g to both sides:
g(f(x1)) = g(f(z2)) = idx(z1) = idx(z2) = 21 = x2.

Hence f is injective.

32



Proof
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Surjectivity: Forany y € Y, set x = g(y). Then

f(x) = fl9(y)) = (fog)(y) =idy(y) = y.

Therefore every y € Y has a preimage, so f is surjective.
Since f is both injective and surjective, f is bijective. (I

33



Notes
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¢ In the bundle context, a section gives a right inverse of .

e If 7 also had a left inverse, that would force = to be injective,
which bundle projections typically are not (because fibers
often contain multiple points).

e Thus for a general bundle, = is surjective but not injective, so
it has sections, but no inverse redefining 7 as bijection.
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Summary and Roadmap

The University of Manchester

We have defined standard sets (N, Z, Q, R) and positive
subsets.

We introduced predicate/set-builder notation, Cartesian
products, and matrices.

Reviewed logical connectives and quantifiers; gave
continuity, uniform continuity.

Covered set operations (union, intersection, difference,
power set) and the Cartesian product.

Defined functions, composition, identity, and equality of
functions.

Introduced injectivity, surjectivity, bijectivity, and the
connection to inverses (left, right).

Introduced bundles, projections, fibers, and sections, with a
concrete annulus example.
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Homework
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Prove or disprove:
1. finjective < f has a left inverse.
2. f hasrightinverse = f surjective.

g

f surjective = f has right inverse.
f bijective < f invertible.

Decomposition into fibers is indeed a disjoint union:
E = | |,ca P is a disjoint decomposition into fibers.
If = : E — M is a surjection, then E = | |,.,, 7 *(z) and for

r#£y, 7 N z)NTHy) = 0.

o &
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