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Definition of an n—ary Operation

The University of Manchester

Let X be a nonempty set and n € N. An n—ary operation on X is
a function
X" — X

Special cases:

e n = 0: a nullary operation (a constant c € X).

e n = 1: a unary operation f : X — X.

e n = 2: a binary operation f : X x X — X.
Notation: For a binary operation, we often write

flz,y) =z xy.



Examples of n—ary Operations
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Let X = Z.

Nullary (0-ary):
c=0¢€Z.
Unary (1-ary):
@)= —o, B =a+1, fole) =

Eachmaps Z — Z or R — R.
Binary (2-ary):

fl(ﬂj’,y) =r+Y, f2($7y) =2y, f3($ay) =Y.

Check closure:
e x +y € Z: v binary operation on Z.
e xy € Z: v binary operation.

e z¥ may not be integer for all z,y € Z (e.9. z = —1,y = 1), so
X, not closed on Z.



Associativity and Commutativity
"Let*"X"% X — X be a binary operation.
Definition (Associativity):

ax(bxc)=(axb)xc, Va,bceX.

Definition (Commutativity):

axb=bxa, Va,beX.

/\

a*b bxc

a C

(a*xb)x*c ax*(bxc)
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e On (Z,+): addition is both associative and commutative,
since for all a, b, c € Z,

(a+b)+c=a+ (b+c), a+b=>b+a.

e On (R, —): subtraction is neither associative nor
commutative, e.g.

(5—-3)—2=0#£5—(3-2)=4, 5-3+£3—5.

e On (R, x): multiplication is associative and commutative,
since
(ab)e = a(bc), ab = ba.
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e On (Ms42(R), x): matrix multiplication is associative but
not commutative; for example,

10 0 1] _
A=t 0.5=[2 ] = anrsa

e On (R, +): division is neither associative nor
commutative, e.g.

8+4)+2=1#8+(4+2)=4.

e On the set of functions F'(X) with pointwise addition
(f 4+ 9)(x) = f(z) + g(x): operation is both associative and
commutative.



Identity (Neutral) Elements
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Let (X, ) be a set with a binary operation. An elemente € X is
called a

o left identity ifexx =z forall z € X,
e right identity if z x e = z forall x € X,
o two-sided identity (neutral element) if both hold.

Remark

If both left and right identities exist, they are necessarily equal
(proved later).



Examples
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e Example: (N,+): e=0; (R,x): e=1.
e Counterexample: Consider the operation (—) on the real

numbers R, defined by a * b = a — b. We want to check
whether there exists an element e € R such that

a—e=a=e—a, VaécR.

The first equation a — e = a implies e = 0. Substituting e =0
into the second equation gives e — a = 0 — a = —a. For this
to equal «a for all a, we would need —a = a, which is true only
when a = 0.

Hence no single element e satisfies both conditions for all

a € R. Therefore, subtraction has no identity element — it
fails to form a monoid under subtraction.



Inverse Elements
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Let (X, , e) have identity element e. An element 2’ € X is called
o aleftinverseof zif 2’ xz = e,
e arightinverse of z if z x 2/ = e,
e an inverse if both hold.

Examples:

(Z,+,0) : inverse of z is — z,

(R*, x,1) : inverse of z is 1/x.



BRI = xaple 1: (1, +)
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Let X =N, define u(z,y) = = +y.
Associative? (v +y)+z=a+ (y+2): v
Commutative? x +y =y +z: v
Identity? 0 satisfiesz +0=0+z =z: v/

e Inverse? No, since forx > 0,noy € Ns.t. x +y =0: X
Conclusion: (N, +) is a commutative monoid, not a group.



Example 2: (Z, x)
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Let X =Z, p(z,y) = zy.

Associative: z(yz) = (zy)z: v*
Commutative: zy = yx: v~

Identity: 1: v

e Inverse: only for z = +1: v partial.

Conclusion: (Z, x) is a commutative monoid, not a group.



Example 3: (R, x)
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Let X = RT, pu(x,y) = xy.
Associative: v

Commutative: v

Identity: 1: v

Inverse: 1/z € Rt: v

Conclusion: (R, x) is an abelian group.



Example 4: (R, x)
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Associative: v

Commutative: v

Identity: 1: v

Inverse: fails for x = 0 (no 1/0): x

Hence (R, x) is a commutative monoid, not a group.



Example 5: A Finite Operation Table
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Let X = {a, b, ¢} with operation  defined as

e Check for left/right identity: none satisfies e x z = x x e = x.
e Commutativity? Table not symmetric — x

e Associativity? test fails for example a * (b* c) # (a *b) x ¢: x
e Invertibility? none globally.

Conclusion: Not a monoid, just a magma (set with binary
operation).



Proposition: Uniqueness of the Unit
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Proposition.

If a binary operation x on X admits a left identity e;, and a right
identity er, then they coincide: e;, = ep.
Proof.

er, =er*xer (since eg is right identity)

er, xer =er (since ey, is left identity)

Hence e, = er. O

Corollary

A binary structure can have at most one identity element.



Definition of a Monoid
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A monoid is a triple (M, x, e) such that:
1. x: M x M — M is a binary operation,
2. xis associative: (a*xb)*xc=ax (bxc),
3. e€ Misanidentity: exz =z xe=ux.

M x M x M
M x M M x M

%
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Remark on Commutative (Abelian) Monoids.

A monoid (M, x, e) consists of a set M, a binary operation
x: M x M — M, and an identity element e satisfying:

(axb)xc=ax*(bxc), exa=axe=a, Va,bcelM.
If, in addition, the operation x satisfies
axb=0bxa, Va,be M,

then the monoid is called a commutative monoid, or
equivalently, an abelian monoid.

Intuition: Commutativity means that the order in which elements
are combined does not affect the result. In a commutative
monoid, both the associative property and the commutative
property coexist with an identity element.



IR Rermar
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e (N, +,0): addition of natural numbers — commutative and
associative with identity 0.

e (R, x,1): multiplication of real numbers — commutative with
identity 1.

e (Z,+,0): addition of integers — commutative with identity 0.

Non-Example: (Ms.2(R), x, I2) is a monoid because matrix
multiplication is associative and I acts as the identity, but it is not
commutative in general, since for many matrices A, B, AB # BA.
Historical Note: The term abelian originates from Niels Henrik
Abel, a 19th-century mathematician who first studied
commutative algebraic structures.



Examples of Monoids
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N, +,0) — additive monoid.
N, x, 1) — multiplicative monoid.
R, x,1)

—

— commutative monoid (but not group).
Z),4+,0) where O is the zero matrix.

—~ o~

7), x, Is) where I is identity matrix.

Visualization

(N,+) —— (Z,+) ———— (R, +)

extension of inverses



Equality of Left and Right Inverses
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Proposition. Let (X, %, ¢) be a monoid, and let a,b,c € X. Ifbis
a left inverse of a and c is a right inverse of ¢, i.e.

bxa=e and axc=e¢,

then b = c. Consequently, a is invertible and b = ¢ = a~".
Proof.

b=bxe=bx(axc)=(bxa)xc=exc=c.

Hence b = ¢, and both satisfy a xb =b*xa = e.

Conclusion

In a monoid, if both left and right inverses exist for an element,
they coincide.

20



Product of Invertible Elements
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Proposition. Let (X, %, ¢) be a monoid. If a,b € X are invertible,
then sois a * b.
Proof. Let ¢! and b~! denote their inverses:

a*a_lze:a_l*a, bxb l=e=b"1xb.

Consider (a*b) * (b= xa™1):

1

(axb)x (b xa ) =ax(bsb Hxal=axexal=axat=e.

Similarly,
b lxa Hx(axb)=btx(atxa)xb=b"lxexb=c.

Thus (b=! xa~!) is the inverse of (a  b).
Hence: The set of invertible elements in a monoid is closed un-
der the binary operation.

21



Definition of a Group
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Definition. A group is a quadruple (G, *, e, i) where
1. (G, *,e) is a monoid,
2. For every x € G, there exists an inverse i(x) € G such that

xxi(z) =1i(x)*z =e.

e The mapi: G — G sending x — i(x) is called the inverse
map.
e The group is called commutative or abelian if

rxy=yx*xx, Vr,yceqG.

22



Examples of Groups
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Examples:

1. (Z,+,0,—) Abelian group under addition.
Ve e Z, x + (—z) = 0.

2. (Myxn(Z),+,0,,—) Additive abelian group of integer
matrices.

3. (Mypxn(R),+,0,,—) and (M, xn(Q), +, O,, —) Additive
abelian groups of real or rational matrices.

extensions by density

All are abelian since addition is commutative.

23



Definition: Group of Units
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Let (X, %, e) be a monoid. The set of all invertible elements of X
is denoted by

X*={zeX |3z leX zxasl=tsx=¢}
This set forms a group under x, called the group of units of X.

Proof (Sketch).
Closure: proved earlier (product of invertibles is invertible).

Associativity: inherited from the monoid.
Identity: e € X*, e~ ! =e.
Inverse: each = € X* has inverse z~! € X*.

24



Examples of Groups of Units
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Multiplicative Groups:

x,e)  X* Reason

x,1) {—=1,1} only £1 have multiplicative inverses in Z
x,1) @\ {0} nonzero invertible

x,1) R\ {0} nonzero invertible

Additive/Other Groups:

(N,+,0) {0} identity only
(N, x,1) {1} 1only

25



Remark: Restriction of a Function
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Let X, Y aretwosetsand f: X - Y and U C X.
Definition. The restriction of f to U is the function

flu:U =Y, flu(x)=f(x)forzel.
Remark. If U C V C X, then

(fIV)lo = flu-

|

flu

4>Y

26



Remark: Shrink of a Function
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Remark (Shrink). Sometimes one considers a shrinking of a
function’s domain to a subset where a certain property holds
(e.g., continuity, invertibility).

Formally, if P(x) is a property on X, define

Shrinkp(f) = flizex|P() holds}-

Thus, a shrink is a restricted version of f preserving only the por-
tion of its domain where it satisfies a given property.

27



General and Special Linear Groups
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Definition (General Linear Group).

For a field F' and integer n > 1,
GL,(F)={A € M,xn(F) | det(A) # 0}.

Under matrix multiplication, GL,,(F") forms a group.
Identity: 7,,.
Inverse: A~! = s adj(A).

Definition (Special Linear Group).

SL,(F)={A € GL,(F) | det(A) =1}.
It is @ normal subgroup of GL,,(F).

28



Relation Between GL, and SL,
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1 —— SLy(F) —— GL,(F) — %' p 1

Short Exact Sequence

1 — SLn(F) = GL,(F) £ F* -1

Interpretation: SLn(F) (matrices with determinant 1) is the kernel
of the determinant map, making it a normal subgroup of GL(F).
The quotient group GL,(F)/SLy(F) is isomorphic to F*, the multi-
plicative group of the field F.

29



Proposition on Composition of Functions
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Let A, B,C,Dbesetsandletf: A—- B, g:B—C, h:C — D.

Proposition.

ho(gof)=(hog)of.

That is, function composition is associative.

Proof. Forall z € A,

[ho(ge fl(x) = h(g(f(x))) = [(hog)o fl(x).

Therefore both sides define the same function.

Consequences

Function composition forms a monoid operation on the set of all
maps from a set to itself.

30



sy Corollary: The Function Monoid
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Corollary.

Let A be a set. Then (End(A), o,id4) is a monoid, where
End(4) ={f: A— A}.
Proof.

e Composition is associative (previous proposition).

¢ |dentity function acts as neutral element:
foidg =idao f=f.
Hence it satisfies monoid axioms. [J
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Definition: Group of Bijections
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Automorphisms

The set of all bijections f : A — A under composition forms a
group, denoted by Aut(A) or S 4, called the group of
automorphisms (permutations) of A.

Properties:

Closure: composition of bijections is bijection.

Associativity: inherited from function composition.
Identity: id 4.
Inverse: each bijection has inverse function.

32



Permutation Group S,
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For a finite set A = {1,2,...,n},
S, = {all bijections A — A}

is called the symmetric group on n letters. |S,| = n!.

Notation:
permutations often written in two-line form:

o= (; ?) i’) means (1) =2, 0(2) =3, 0(3) = 1.

33



il Example: The Group S3
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Elements of S3:

identity: e=(1)(2)(3),
transpositions:  (12), (13), (23),
3-cycles: (123), (132).

Non-commutativity Example:
(12) 0 (23) = (123), (23) 0 (12) = (132),
and (123) # (132). Hence S5 is not commutative (non-abelian).

(132)

(12) — (23)

N

(123)

34



IR Summary
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Proved equality of left and right inverses and closure of
invertibles.

Defined groups, abelian groups, and examples.
Introduced the group of units X*.
Defined GL,(F), SL,(F) with exact-sequence relation.

Proved associativity of composition, showed (End(A), o)
monoid.

Defined groups of bijections and permutation groups .5,,, with
S3 as first non-abelian example.

Clarified restriction and shrink remarks for functions.
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