

Combinatorial Mesh Calculus (CMC): Lecture 2

Lectured by: Dr. Kiprian Berbatov¹
Lecture Notes Compiled by: Muhammad Azeem¹
Under the supervision of: Prof. Andrey P. Jivkov¹

 $^{\mathrm{1}}\mathrm{Department}$ of Mechanical and Aerospace Engineering, The University of Manchester, Oxford Road,

Manchester M13 9PL, UK

MANCHESIER Definition of an n-ary Operation

Definition.

Let X be a nonempty set and $n \in \mathbb{N}$. An *n*-ary operation on X is a function

$$f: X^n \longrightarrow X$$
.

Special cases:

- n=0: a nullary operation (a constant $c \in X$).
- n=1: a unary operation $f: X \to X$.
- n=2: a binary operation $f: X \times X \to X$.

Notation: For a binary operation, we often write

$$f(x,y) = x * y.$$

Examples of n-ary Operations

Let $X = \mathbb{Z}$.

Nullary (0-ary):

$$c=0\in\mathbb{Z}.$$

Unary (1-ary):

$$f_1(x) = -x$$
, $f_2(x) = x + 1$, $f_3(x) = \frac{1}{x^2 + 1}$.

Each maps $\mathbb{Z} \to \mathbb{Z}$ or $\mathbb{R} \to \mathbb{R}$.

Binary (2-ary):

$$f_1(x,y) = x + y$$
, $f_2(x,y) = xy$, $f_3(x,y) = x^y$.

Check closure:

- $x + y \in \mathbb{Z}$: \checkmark binary operation on \mathbb{Z} .
- $xy \in \mathbb{Z}$: \checkmark binary operation.
- x^y may not be integer for all $x, y \in \mathbb{Z}$ (e.g. $x = -1, y = \frac{1}{2}$), so \times , not closed on \mathbb{Z} .

MANCHESIER Associativity and Commutativity

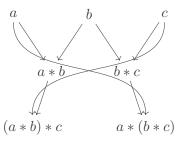
Let $*: X \times X \to X$ be a binary operation.

Definition (Associativity):

$$a * (b * c) = (a * b) * c, \quad \forall a, b, c \in X.$$

Definition (Commutativity):

$$a * b = b * a, \quad \forall a, b \in X.$$



• On $(\mathbb{Z}, +)$: addition is both **associative** and **commutative**, since for all $a, b, c \in \mathbb{Z}$,

$$(a+b) + c = a + (b+c),$$
 $a+b = b+a.$

 On (ℝ, −): subtraction is neither associative nor commutative, e.g.

$$(5-3)-2=0 \neq 5-(3-2)=4$$
, $5-3 \neq 3-5$.

 \bullet On $(\mathbb{R},\times):$ multiplication is associative and commutative, since

$$(ab)c = a(bc), \qquad ab = ba.$$

• On $(M_{2\times 2}(\mathbb{R}), \times)$: matrix multiplication is **associative** but **not commutative**; for example,

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \implies AB \neq BA.$$

 On (R, ÷): division is neither associative nor commutative, e.g.

$$(8 \div 4) \div 2 = 1 \neq 8 \div (4 \div 2) = 4.$$

• On the set of functions F(X) with pointwise addition (f+g)(x)=f(x)+g(x): operation is both **associative** and **commutative**.

MANCHESIER Identity (Neutral) Elements

Definition.

Let (X,*) be a set with a binary operation. An element $e \in X$ is called a

- **left identity** if e * x = x for all $x \in X$.
- right identity if x * e = x for all $x \in X$,
- two-sided identity (neutral element) if both hold.

Remark

If both left and right identities exist, they are necessarily equal (proved later).

- **Example:** $(\mathbb{N}, +) : e = 0; (\mathbb{R}, \times) : e = 1.$
- Counterexample: Consider the operation (-) on the real numbers \mathbb{R} , defined by a*b=a-b. We want to check whether there exists an element $e\in\mathbb{R}$ such that

$$a - e = a = e - a, \quad \forall a \in \mathbb{R}.$$

The first equation a-e=a implies e=0. Substituting e=0 into the second equation gives e-a=0-a=-a. For this to equal a for all a, we would need -a=a, which is true only when a=0.

Hence no single element e satisfies both conditions for all $a \in \mathbb{R}$. Therefore, subtraction has *no identity element* — it fails to form a monoid under subtraction.

Definition.

Let (X, *, e) have identity element e. An element $x' \in X$ is called

- a **left inverse** of x if x' * x = e,
- a right inverse of x if x * x' = e,
- an inverse if both hold.

Examples:

 $(\mathbb{Z},+,0)$: inverse of x is -x,

 $(\mathbb{R}^+, \times, 1)$: inverse of x is 1/x.

Let $X = \mathbb{N}$, define $\mu(x, y) = x + y$.

- Associative? (x+y)+z=x+(y+z): \checkmark
- Commutative? x + y = y + x:
- Identity? 0 satisfies x + 0 = 0 + x = x:
- Inverse? No, since for x > 0, no $y \in \mathbb{N}$ s.t. x + y = 0: \times

Conclusion: $(\mathbb{N},+)$ is a commutative monoid, not a group.

Let
$$X = \mathbb{Z}$$
, $\mu(x, y) = xy$.

- Associative: x(yz) = (xy)z: \checkmark
- Commutative: xy = yx: \checkmark
- Identity: 1: ✓
- Inverse: only for $x = \pm 1$: \checkmark partial.

Conclusion: (\mathbb{Z}, \times) is a commutative monoid, not a group.

Let
$$X = \mathbb{R}^+$$
, $\mu(x, y) = xy$.

- Associative:
- Commutative: ✓
- Identity: 1: ✓
- Inverse: $1/x \in \mathbb{R}^+$: \checkmark

Conclusion: (\mathbb{R}^+, \times) is an abelian group.

- Associative: ✓
- Commutative: ✓
- Identity: 1: ✓
- Inverse: fails for x = 0 (no 1/0): \times

Hence (\mathbb{R}, \times) is a commutative monoid, not a group.

MANCHESTER Example 5: A Finite Operation Table

Let $X = \{a, b, c\}$ with operation * defined as

- Check for left/right identity: none satisfies e * x = x * e = x.
- Commutativity? Table not symmetric → ×
- Associativity? test fails for example $a*(b*c) \neq (a*b)*c$: \times
- Invertibility? none globally.

Conclusion: Not a monoid, just a magma (set with binary operation).

MANCHESIER Proposition: Uniqueness of the Unit

Proposition.

If a binary operation * on X admits a left identity e_L and a right identity e_R , then they coincide: $e_L = e_R$.

Proof.

$$e_L = e_L * e_R$$
 (since e_R is right identity)

$$e_L * e_R = e_R$$
 (since e_L is left identity)

Hence
$$e_L = e_R$$
. \square

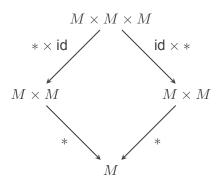
Corollary

A binary structure can have at most one identity element.

MANCHESTER Definition of a Monoid

A *monoid* is a triple (M, *, e) such that:

- 1. $*: M \times M \to M$ is a binary operation,
- 2. * is associative: (a * b) * c = a * (b * c),
- 3. $e \in M$ is an identity: e * x = x * e = x.



Remark on Commutative (Abelian) Monoids.

A monoid (M, *, e) consists of a set M, a binary operation $*: M \times M \to M$, and an identity element e satisfying:

$$(a * b) * c = a * (b * c),$$
 $e * a = a * e = a,$ $\forall a, b, c \in M.$

If, in addition, the operation * satisfies

$$a * b = b * a$$
, $\forall a, b \in M$,

then the monoid is called a **commutative monoid**, or equivalently, an **abelian monoid**.

Intuition: Commutativity means that the order in which elements are combined does not affect the result. In a commutative monoid, both the associative property and the commutative property coexist with an identity element.

Examples:

- $(\mathbb{N}, +, 0)$: addition of natural numbers commutative and associative with identity 0.
- $(\mathbb{R}, \times, 1)$: multiplication of real numbers commutative with identity 1.
- $(\mathbb{Z}, +, 0)$: addition of integers commutative with identity 0.

Non-Example: $(M_{2\times 2}(\mathbb{R}), \times, I_2)$ is a monoid because matrix multiplication is associative and I_2 acts as the identity, but it is *not commutative* in general, since for many matrices $A, B, AB \neq BA$. **Historical Note:** The term *abelian* originates from Niels Henrik Abel, a 19th-century mathematician who first studied commutative algebraic structures.

MANCHESTER Examples of Monoids

- $(\mathbb{N}, +, 0)$ additive monoid.
- (N, ×, 1) multiplicative monoid.
- $(\mathbb{R}, \times, 1)$ commutative monoid (but not group).
- $(M_{2\times 2}(\mathbb{Z}),+,O)$ where O is the zero matrix.
- $(M_{2\times 2}(\mathbb{Z}), \times, I_2)$ where I_2 is identity matrix.

Visualization

$$(\mathbb{N},+)$$
 \longrightarrow $(\mathbb{R},+)$ extension of inverses

MANCHESIER Equality of Left and Right Inverses

Proposition. Let (X, *, e) be a monoid, and let $a, b, c \in X$. If b is a left inverse of a and c is a right inverse of a, i.e.

$$b*a=e$$
 and $a*c=e$,

then b=c. Consequently, a is invertible and $b=c=a^{-1}$. Proof.

$$b = b * e = b * (a * c) = (b * a) * c = e * c = c.$$

Hence b = c, and both satisfy a * b = b * a = e.

Conclusion

In a monoid, if both left and right inverses exist for an element, they coincide.

MANCHESTER Product of Invertible Elements

Proposition. Let (X, *, e) be a monoid. If $a, b \in X$ are invertible, then so is a*b.

Proof. Let a^{-1} and b^{-1} denote their inverses:

$$a * a^{-1} = e = a^{-1} * a, \quad b * b^{-1} = e = b^{-1} * b.$$

Consider $(a * b) * (b^{-1} * a^{-1})$:

$$(a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1} = a*e*a^{-1} = a*a^{-1} = e.$$

Similarly,

$$(b^{-1} * a^{-1}) * (a * b) = b^{-1} * (a^{-1} * a) * b = b^{-1} * e * b = e.$$

Thus $(b^{-1} * a^{-1})$ is the inverse of (a * b).

Hence: The set of invertible elements in a monoid is closed under the binary operation.

MANCHESIER Definition of a Group

Definition. A *group* is a quadruple (G, *, e, i) where

- 1. (G, *, e) is a monoid,
- 2. For every $x \in G$, there exists an inverse $i(x) \in G$ such that

$$x * i(x) = i(x) * x = e.$$

Remarks:

- The map $i: G \to G$ sending $x \mapsto i(x)$ is called the *inverse* тар.
- The group is called commutative or abelian if

$$x * y = y * x, \quad \forall x, y \in G.$$

MANCHESTER Examples of Groups

Examples:

- 1. $(\mathbb{Z}, +, 0, -)$ Abelian group under addition. $\forall x \in \mathbb{Z}, x + (-x) = 0.$
- 2. $(M_{n\times n}(\mathbb{Z}),+,O_n,-)$ Additive abelian group of integer matrices.
- 3. $(M_{n\times n}(\mathbb{R}),+,O_n,-)$ and $(M_{n\times n}(\mathbb{Q}),+,O_n,-)$ Additive abelian groups of real or rational matrices.

All are abelian since addition is commutative.

MANCHESIER Definition: Group of Units

Definition.

Let (X, *, e) be a monoid. The set of all invertible elements of X is denoted by

$$X^* = \{ x \in X \mid \exists x^{-1} \in X, \ x * x^{-1} = x^{-1} * x = e \}.$$

This set forms a group under *, called the **group of units** of X.

Proof (Sketch).

- Closure: proved earlier (product of invertibles is invertible).
- Associativity: inherited from the monoid.
- Identity: $e \in X^*$, $e^{-1} = e$.
- Inverse: each $x \in X^*$ has inverse $x^{-1} \in X^*$.

MANCHESIER Examples of Groups of Units

Multiplicative Groups:

```
\begin{array}{ccc} (X,*,e) & X^* & \text{Reason} \\ (\mathbb{Z},\times,1) & \{-1,1\} & \text{only} \ \pm 1 \ \text{have multiplicative inverses in} \ \mathbb{Z} \end{array}
(\mathbb{Q}, \times, 1) \mathbb{Q} \setminus \{0\} nonzero invertible
(\mathbb{R}, \times, 1) \mathbb{R} \setminus \{0\} nonzero invertible
```

Additive/Other Groups:

$$(\mathbb{N},+,0)$$
 $\{0\}$ identity only $(\mathbb{N},\times,1)$ $\{1\}$ 1 only

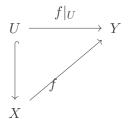
MANCHESIER Remark: Restriction of a Function

Let X, Y are two sets and $f: X \to Y$ and $U \subseteq X$. **Definition**. The *restriction* of f to U is the function

$$f|_U: U \to Y, \quad f|_U(x) = f(x) \text{ for } x \in U.$$

Remark. If $U \subseteq V \subseteq X$, then

$$(f|_V)|_U = f|_U.$$



MANCHESTER Remark: Shrink of a Function

Remark (Shrink). Sometimes one considers a shrinking of a function's domain to a subset where a certain property holds (e.g., continuity, invertibility).

Formally, if P(x) is a property on X, define

$$\mathsf{Shrink}_P(f) = f|_{\{x \in X \mid P(x) \text{ holds}\}}.$$

Thus, a *shrink* is a restricted version of f preserving only the portion of its domain where it satisfies a given property.

MANCHESIER General and Special Linear Groups

Definition (General Linear Group).

For a field F and integer $n \geq 1$,

$$GL_n(F) = \{A \in M_{n \times n}(F) \mid \det(A) \neq 0\}.$$

Under matrix multiplication, $GL_n(F)$ forms a group.

Identity: I_n .

Inverse: $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$.

Definition (Special Linear Group).

$$SL_n(F) = \{ A \in GL_n(F) \mid \det(A) = 1 \}.$$

It is a normal subgroup of $GL_n(F)$.

MANCHESIER Relation Between GL_n and SL_n

$$\mathbf{1} \longrightarrow \text{SL}_{n}(F) \longrightarrow \text{GL}_{n}(F) \stackrel{\text{det}}{\longrightarrow} F^{*} \longrightarrow \mathbf{1}$$

Short Exact Sequence

$$1 \to SL_n(F) \to GL_n(F) \xrightarrow{\det} F^* \to 1$$

Interpretation: $SL_n(F)$ (matrices with determinant 1) is the kernel of the determinant map, making it a normal subgroup of $GL_n(F)$. The quotient group $GL_n(F)/SL_n(F)$ is isomorphic to F^* , the multiplicative group of the field F.

MANCHESIER Proposition on Composition of Functions

Let A, B, C, D be sets and let $f: A \to B, g: B \to C, h: C \to D$.

Proposition.

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

That is, function composition is associative.

Proof. For all $x \in A$.

$$[h \circ (g \circ f)](x) = h(g(f(x))) = [(h \circ g) \circ f](x).$$

Therefore both sides define the same function.

Consequences

Function composition forms a monoid operation on the set of all maps from a set to itself.

MANCHESTER Corollary: The Function Monoid

Corollary.

Let A be a set. Then $(End(A), \circ, id_A)$ is a monoid, where $\operatorname{End}(A) = \{ f : A \to A \}.$

Proof.

- Composition is associative (previous proposition).
- Identity function acts as neutral element: $f \circ id_A = id_A \circ f = f$.

Hence it satisfies monoid axioms. □

MANCHESTER Definition: Group of Bijections

Automorphisms

The set of all bijections $f:A\to A$ under composition forms a group, denoted by Aut(A) or S_A , called the *group of* automorphisms (permutations) of A.

Properties:

- Closure: composition of bijections is bijection.
- Associativity: inherited from function composition.
- Identity: id_A.
- Inverse: each bijection has inverse function.

MANCHESIER Permutation Group S_n

Definition.

For a finite set $A = \{1, 2, \dots, n\}$,

$$S_n = \{ \text{all bijections } A \to A \}$$

is called the *symmetric group on* n *letters*. $|S_n| = n!$.

Notation:

permutations often written in two-line form:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \text{means } \sigma(1) = 2, \ \sigma(2) = 3, \ \sigma(3) = 1.$$

MANCHESTER Example: The Group S_3

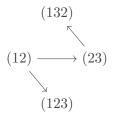
Elements of S_3 :

identity: e = (1)(2)(3), transpositions: (12), (13), (23),3-cycles: (123), (132).

Non-commutativity Example:

$$(12) \circ (23) = (123), \quad (23) \circ (12) = (132),$$

and $(123) \neq (132)$. Hence S_3 is **not commutative** (non-abelian).



MANCHESTER Summary The University of Manchester

- Proved equality of left and right inverses and closure of invertibles.
- Defined groups, abelian groups, and examples.
- Introduced the group of units X*.
- Defined $GL_n(F)$, $SL_n(F)$ with exact-sequence relation.
- Proved associativity of composition, showed (End(A), o) monoid.
- Defined groups of bijections and permutation groups S_n , with S_3 as first non-abelian example.
- Clarified restriction and shrink remarks for functions.

