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Definition of an n–ary Operation

Definition.

Let X be a nonempty set and n ∈ N. An n–ary operation on X is

a function

f : Xn −→ X.

Special cases:

• n = 0: a nullary operation (a constant c ∈ X).

• n = 1: a unary operation f : X → X.

• n = 2: a binary operation f : X ×X → X.

Notation: For a binary operation, we often write

f(x, y) = x ∗ y.
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Examples of n–ary Operations
Let X = Z.
Nullary (0–ary):

c = 0 ∈ Z.

Unary (1–ary):

f1(x) = −x, f2(x) = x+ 1, f3(x) =
1

x2 + 1
.

Each maps Z → Z or R → R.
Binary (2–ary):

f1(x, y) = x+ y, f2(x, y) = xy, f3(x, y) = xy.

Check closure:

• x+ y ∈ Z: binary operation on Z.
• xy ∈ Z: binary operation.

• xy may not be integer for all x, y ∈ Z (e.g. x = −1, y = 1
2 ), so

×, not closed on Z. 3



Associativity and Commutativity
Let ∗ : X ×X → X be a binary operation.

Definition (Associativity):

a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀a, b, c ∈ X.

Definition (Commutativity):

a ∗ b = b ∗ a, ∀a, b ∈ X.

a b c

a ∗ b b ∗ c

(a ∗ b) ∗ c a ∗ (b ∗ c)
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Example

• On (Z,+): addition is both associative and commutative,

since for all a, b, c ∈ Z,

(a+ b) + c = a+ (b+ c), a+ b = b+ a.

• On (R,−): subtraction is neither associative nor
commutative, e.g.

(5− 3)− 2 = 0 6= 5− (3− 2) = 4, 5− 3 6= 3− 5.

• On (R,×): multiplication is associative and commutative,

since

(ab)c = a(bc), ab = ba.
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Example

• On (M2×2(R),×): matrix multiplication is associative but
not commutative; for example,

A =

[
1 0
0 0

]
, B =

[
0 1
0 0

]
=⇒ AB 6= BA.

• On (R,÷): division is neither associative nor
commutative, e.g.

(8÷ 4)÷ 2 = 1 6= 8÷ (4÷ 2) = 4.

• On the set of functions F (X) with pointwise addition
(f + g)(x) = f(x) + g(x): operation is both associative and
commutative.
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Identity (Neutral) Elements

Definition.

Let (X, ∗) be a set with a binary operation. An element e ∈ X is

called a

• left identity if e ∗ x = x for all x ∈ X,

• right identity if x ∗ e = x for all x ∈ X,

• two–sided identity (neutral element) if both hold.

Remark

If both left and right identities exist, they are necessarily equal

(proved later).
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Examples

• Example: (N,+) : e = 0; (R,×) : e = 1.

• Counterexample: Consider the operation (−) on the real
numbers R, defined by a ∗ b = a− b. We want to check

whether there exists an element e ∈ R such that

a− e = a = e− a, ∀ a ∈ R.

The first equation a− e = a implies e = 0. Substituting e = 0
into the second equation gives e− a = 0− a = −a. For this
to equal a for all a, we would need −a = a, which is true only
when a = 0.
Hence no single element e satisfies both conditions for all
a ∈ R. Therefore, subtraction has no identity element — it

fails to form a monoid under subtraction.
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Inverse Elements

Definition.

Let (X, ∗, e) have identity element e. An element x′ ∈ X is called

• a left inverse of x if x′ ∗ x = e,

• a right inverse of x if x ∗ x′ = e,

• an inverse if both hold.

Examples:

(Z,+, 0) : inverse of x is − x,

(R+,×, 1) : inverse of x is 1/x.
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Example 1: (N,+)

Let X = N, define µ(x, y) = x+ y.

• Associative? (x+ y) + z = x+ (y + z):

• Commutative? x+ y = y + x:

• Identity? 0 satisfies x+ 0 = 0 + x = x:

• Inverse? No, since for x > 0, no y ∈ N s.t. x+ y = 0: ×
Conclusion: (N,+) is a commutative monoid, not a group.
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Example 2: (Z,×)

Let X = Z, µ(x, y) = xy.

• Associative: x(yz) = (xy)z:

• Commutative: xy = yx:

• Identity: 1:

• Inverse: only for x = ±1: partial.

Conclusion: (Z,×) is a commutative monoid, not a group.
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Example 3: (R+,×)

Let X = R+, µ(x, y) = xy.

• Associative:

• Commutative:

• Identity: 1:

• Inverse: 1/x ∈ R+:

Conclusion: (R+,×) is an abelian group.
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Example 4: (R,×)

• Associative:

• Commutative:

• Identity: 1:

• Inverse: fails for x = 0 (no 1/0): ×
Hence (R,×) is a commutative monoid, not a group.
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Example 5: A Finite Operation Table

Let X = {a, b, c} with operation ∗ defined as

∗ a b c

a c a c
b a b c
c c c a

• Check for left/right identity: none satisfies e ∗ x = x ∗ e = x.

• Commutativity? Table not symmetric → ×
• Associativity? test fails for example a ∗ (b ∗ c) 6= (a ∗ b) ∗ c: ×
• Invertibility? none globally.

Conclusion: Not a monoid, just a magma (set with binary

operation).
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Proposition: Uniqueness of the Unit

Proposition.

If a binary operation ∗ on X admits a left identity eL and a right

identity eR, then they coincide: eL = eR.
Proof.

eL = eL ∗ eR (since eR is right identity)

eL ∗ eR = eR (since eL is left identity)

Hence eL = eR. �

Corollary

A binary structure can have at most one identity element.
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Definition of a Monoid

A monoid is a triple (M, ∗, e) such that:
1. ∗ : M ×M → M is a binary operation,

2. ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c),
3. e ∈ M is an identity: e ∗ x = x ∗ e = x.

M ×M ×M

M ×M M ×M

M

∗ × id id× ∗

∗ ∗
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Remark

Remark on Commutative (Abelian) Monoids.

A monoid (M, ∗, e) consists of a set M , a binary operation

∗ : M ×M → M , and an identity element e satisfying:

(a ∗ b) ∗ c = a ∗ (b ∗ c), e ∗ a = a ∗ e = a, ∀a, b, c ∈ M.

If, in addition, the operation ∗ satisfies

a ∗ b = b ∗ a, ∀a, b ∈ M,

then the monoid is called a commutative monoid, or

equivalently, an abelian monoid.

Intuition: Commutativity means that the order in which elements

are combined does not affect the result. In a commutative

monoid, both the associative property and the commutative

property coexist with an identity element.
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Remark

Examples:

• (N,+, 0): addition of natural numbers — commutative and

associative with identity 0.

• (R,×, 1): multiplication of real numbers — commutative with

identity 1.

• (Z,+, 0): addition of integers — commutative with identity 0.

Non-Example: (M2×2(R),×, I2) is a monoid because matrix
multiplication is associative and I2 acts as the identity, but it is not

commutative in general, since for many matrices A,B, AB 6= BA.
Historical Note: The term abelian originates from Niels Henrik

Abel, a 19th-century mathematician who first studied

commutative algebraic structures.
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Examples of Monoids

• (N,+, 0) — additive monoid.

• (N,×, 1) — multiplicative monoid.

• (R,×, 1) — commutative monoid (but not group).

• (M2×2(Z),+, O) where O is the zero matrix.

• (M2×2(Z),×, I2) where I2 is identity matrix.

Visualization

(N,+) (Z,+) (R,+)

extension of inverses
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Equality of Left and Right Inverses

Proposition. Let (X, ∗, e) be a monoid, and let a, b, c ∈ X. If b is
a left inverse of a and c is a right inverse of a, i.e.

b ∗ a = e and a ∗ c = e,

then b = c. Consequently, a is invertible and b = c = a−1.

Proof.

b = b ∗ e = b ∗ (a ∗ c) = (b ∗ a) ∗ c = e ∗ c = c.

Hence b = c, and both satisfy a ∗ b = b ∗ a = e.

Conclusion

In a monoid, if both left and right inverses exist for an element,

they coincide.
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Product of Invertible Elements

Proposition. Let (X, ∗, e) be a monoid. If a, b ∈ X are invertible,

then so is a ∗ b.
Proof. Let a−1 and b−1 denote their inverses:

a ∗ a−1 = e = a−1 ∗ a, b ∗ b−1 = e = b−1 ∗ b.

Consider (a ∗ b) ∗ (b−1 ∗ a−1):

(a ∗ b) ∗ (b−1 ∗ a−1) = a ∗ (b ∗ b−1) ∗ a−1 = a ∗ e ∗ a−1 = a ∗ a−1 = e.

Similarly,

(b−1 ∗ a−1) ∗ (a ∗ b) = b−1 ∗ (a−1 ∗ a) ∗ b = b−1 ∗ e ∗ b = e.

Thus (b−1 ∗ a−1) is the inverse of (a ∗ b).
Hence: The set of invertible elements in a monoid is closed un-

der the binary operation.
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Definition of a Group

Definition. A group is a quadruple (G, ∗, e, i) where
1. (G, ∗, e) is a monoid,
2. For every x ∈ G, there exists an inverse i(x) ∈ G such that

x ∗ i(x) = i(x) ∗ x = e.

Remarks:

• The map i : G → G sending x 7→ i(x) is called the inverse

map.

• The group is called commutative or abelian if

x ∗ y = y ∗ x, ∀x, y ∈ G.
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Examples of Groups

Examples:

1. (Z,+, 0,−) Abelian group under addition.
∀x ∈ Z, x+ (−x) = 0.

2. (Mn×n(Z),+, On,−) Additive abelian group of integer
matrices.

3. (Mn×n(R),+, On,−) and (Mn×n(Q),+, On,−) Additive
abelian groups of real or rational matrices.

(Z,+) (Q,+) (R,+)

extensions by density

All are abelian since addition is commutative.
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Definition: Group of Units

Definition.

Let (X, ∗, e) be a monoid. The set of all invertible elements of X
is denoted by

X∗ = {x ∈ X | ∃x−1 ∈ X, x ∗ x−1 = x−1 ∗ x = e }.

This set forms a group under ∗, called the group of units of X.

Proof (Sketch).

• Closure: proved earlier (product of invertibles is invertible).

• Associativity: inherited from the monoid.

• Identity: e ∈ X∗, e−1 = e.

• Inverse: each x ∈ X∗ has inverse x−1 ∈ X∗.
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Examples of Groups of Units

Multiplicative Groups:

(X, ∗, e) X∗ Reason

(Z,×, 1) {−1, 1} only ±1 have multiplicative inverses in Z
(Q,×, 1) Q \ {0} nonzero invertible

(R,×, 1) R \ {0} nonzero invertible

Additive/Other Groups:

(N,+, 0) {0} identity only

(N,×, 1) {1} 1 only
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Remark: Restriction of a Function

Let X,Y are two sets and f : X → Y and U ⊆ X.

Definition. The restriction of f to U is the function

f |U : U → Y, f |U (x) = f(x) for x ∈ U.

Remark. If U ⊆ V ⊆ X, then

(f |V )|U = f |U .

U

X

Y
f |U

f
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Remark: Shrink of a Function

Remark (Shrink). Sometimes one considers a shrinking of a

function’s domain to a subset where a certain property holds

(e.g., continuity, invertibility).

Formally, if P (x) is a property on X, define

ShrinkP (f) = f |{x∈X|P (x) holds}.

Thus, a shrink is a restricted version of f preserving only the por-

tion of its domain where it satisfies a given property.
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General and Special Linear Groups

Definition (General Linear Group).

For a field F and integer n ≥ 1,

GLn(F ) = {A ∈ Mn×n(F ) | det(A) 6= 0}.

Under matrix multiplication, GLn(F ) forms a group.
Identity: In.
Inverse: A−1 = 1

det(A) adj(A).

Definition (Special Linear Group).

SLn(F ) = {A ∈ GLn(F ) | det(A) = 1}.

It is a normal subgroup of GLn(F ).
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Relation Between GLn and SLn

1 SLn(F) GLn(F) F∗ 1
det

Short Exact Sequence

1 → SLn(F ) → GLn(F )
det−−→ F ∗ → 1

Interpretation: SLn(F) (matrices with determinant 1) is the kernel
of the determinant map, making it a normal subgroup of GLn(F).
The quotient group GLn(F)/SLn(F) is isomorphic to F

∗, the multi-
plicative group of the field F .
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Proposition on Composition of Functions

Let A,B,C,D be sets and let f : A → B, g : B → C, h : C → D.

Proposition.

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

That is, function composition is associative.

Proof. For all x ∈ A,

[h ◦ (g ◦ f)](x) = h(g(f(x))) = [(h ◦ g) ◦ f ](x).

Therefore both sides define the same function.

Consequences

Function composition forms a monoid operation on the set of all

maps from a set to itself.
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Corollary: The Function Monoid

Corollary.

Let A be a set. Then (End(A), ◦, idA) is a monoid, where
End(A) = {f : A → A}.

Proof.

• Composition is associative (previous proposition).

• Identity function acts as neutral element:

f ◦ idA = idA ◦ f = f.

Hence it satisfies monoid axioms. �
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Definition: Group of Bijections

Automorphisms

The set of all bijections f : A → A under composition forms a

group, denoted by Aut(A) or SA, called the group of

automorphisms (permutations) of A.
Properties:

• Closure: composition of bijections is bijection.

• Associativity: inherited from function composition.

• Identity: idA.

• Inverse: each bijection has inverse function.
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Permutation Group Sn

Definition.

For a finite set A = {1, 2, . . . , n},

Sn = {all bijections A → A}

is called the symmetric group on n letters. |Sn| = n!.

Notation:

permutations often written in two-line form:

σ =

(
1 2 3
2 3 1

)
means σ(1) = 2, σ(2) = 3, σ(3) = 1.
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Example: The Group S3

Elements of S3:

identity: e = (1)(2)(3),
transpositions: (12), (13), (23),
3-cycles: (123), (132).

Non-commutativity Example:

(12) ◦ (23) = (123), (23) ◦ (12) = (132),

and (123) 6= (132). Hence S3 is not commutative (non-abelian).

(12) (23)

(123)

(132)
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Summary

• Proved equality of left and right inverses and closure of

invertibles.

• Defined groups, abelian groups, and examples.

• Introduced the group of units X∗.

• Defined GLn(F ), SLn(F ) with exact-sequence relation.

• Proved associativity of composition, showed (End(A), ◦)
monoid.

• Defined groups of bijections and permutation groups Sn, with

S3 as first non-abelian example.

• Clarified restriction and shrink remarks for functions.

35



Thanks
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