

Combinatorial Mesh Calculus (CMC): Lecture 3

Lectured by: Dr. Kiprian Berbatov¹
Lecture Notes Compiled by: Muhammad Azeem¹
Under the supervision of: Prof. Andrey P. Jivkov¹

 $^{1} {\tt Department\ of\ Mechanical\ and\ Aerospace\ Engineering,\ The\ University\ of\ Manchester,\ Oxford\ Road,}$

Manchester M13 9PL, UK

MANCHESIER Definition: Monoid Homomorphism

Definition. Let $(M, *, e_M)$ and (N, \circ, e_N) be monoids. A function $f: M \to N$ is called a **monoid homomorphism** if it satisfies:

1. Compatibility with operation:

$$f(a*b) = f(a) \circ f(b), \quad \forall a, b \in M.$$

2. Preservation of identity:

$$f(e_M) = e_N.$$

Diagrammatic Representation:

$$\begin{array}{cccc} M\times M & & & f\times f \\ & & & & \downarrow \circ \\ & & & \downarrow \circ \\ M & & & & N \end{array}$$

Commutativity of the diagram

MANCHESTER Examples of Monoid Homomorphisms

Example 1.

$$(\mathbb{N},+,0)$$
 and $(\mathbb{N},\times,1)$ Define $f:\mathbb{N}\to\mathbb{N}$ by $f(n)=2^n$.

$$f(a+b) = 2^{a+b} = 2^a \cdot 2^b = f(a)f(b).$$

Hence *f* is a monoid homomorphism.

Example 2.

$$(\mathbb{R},+,0)$$
 and $(\mathbb{R}^+,\times,1)$ Define $f(x)=e^x$.

$$f(x + y) = e^{x+y} = e^x e^y = f(x)f(y).$$

Thus f is a monoid (and in fact group) homomorphism.

MANCHESIER Definition: Group Homomorphism

Definition.

Let $(G, *, e_G, i_G)$ and (H, \circ, e_H, i_H) be groups. A map $f: G \to H$ is called a group homomorphism if it satisfies:

1. $f(a * b) = f(a) \circ f(b)$

(operation preservation)

2. $f(e_G) = e_H$

(identity preservation)

3. $f(i_G(a)) = i_H(f(a))$

(inverse preservation)

Diagrammatic form:

The

diagram commutes if $f(a * b) = f(a) \circ f(b)$.

MANCHESTER Homomorphism Property Reduction

Proposition.

Let $f: G \to H$ be a function between groups. If f satisfies only

$$f(a*b) = f(a) \circ f(b),$$

then automatically:

$$f(e_G) = e_H, \quad f(a^{-1}) = f(a)^{-1}.$$

Proof. $f(e_G) = f(e_G * e_G) = f(e_G) \circ f(e_G) \Rightarrow f(e_G) = e_H$. Next.

$$e_H = f(e_G) = f(a * a^{-1}) = f(a) \circ f(a^{-1}) \Rightarrow f(a^{-1}) = f(a)^{-1}.$$

Hence: Only property (1) is needed to check; others follow automatically.

MANCHESIER Isomorphism of Monoids or Groups

Definition.

Let $(X, *, e_X)$ and (Y, \circ, e_Y) be monoids (or groups). A map $f: X \to Y$ is called an *isomorphism* if:

- 1. *f* is a homomorphism;
- 2. f is bijective;
- 3. f^{-1} is also a homomorphism.

Remark.

If f is bijective and satisfies $f(a * b) = f(a) \circ f(b)$, then its inverse f^{-1} automatically respects the operations. Hence, bijectivity is enough to guarantee isomorphism.

Notation:

$$(X, *, e_X) \cong (Y, \circ, e_Y).$$

Read as "X and Y are isomorphic as monoids (or groups)."

$$(\mathbb{R}, +, 0) \xrightarrow{f(x)=e^x} (\mathbb{R}^+, \times, 1).$$

Check:

$$f(x + y) = e^{x+y} = e^x e^y = f(x)f(y), \quad f(0) = 1.$$

Inverse map: $f^{-1}(y) = \ln(y)$. Then

$$\ln(xy) = \ln(x) + \ln(y).$$

Hence both f and f^{-1} are homomorphisms.

$$(\mathbb{R},+)\cong (\mathbb{R}^+,\times).$$

Definition.

Let (G, *, e, i) be a group. A subset $H \subseteq G$ is a *subgroup* of G, if it is a group with the same operations restricted to H. In other words, we need:

- 1. $e \in H$
- **2**. $\forall a, b \in H, \ a * b \in H$
- 3. $\forall a \in H, i(a) \in H$

We denote it as $H \leq G$.

(contains identity),

(closed under operation),

(closed under inverses).

MANCHESTER Simplified Subgroup Test

Remark.

The above three properties can be reduced to a single condition:

$$\forall a, b \in H, \quad a * b^{-1} \in H.$$

Proof.

- Let a = b = e: gives $e \in H$.
- For $a, b \in H$, $b^{-1} \in H$ so $a * b^{-1} \in H \Rightarrow$ closure.
- Taking $a = e, e * b^{-1} = b^{-1} \in H$ gives closure under inverses.

Hence condition (4) implies all three original subgroup properties.

MANCHESIER Example 1: $(\mathbb{Z},+)$ and $n\mathbb{Z}$

Let $G = (\mathbb{Z}, +, 0)$ and $H = n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}.$ Proof.

- \bullet $0 = n \cdot 0 \in n\mathbb{Z}$.
- For $a = nk_1, b = nk_2 \in n\mathbb{Z}, a b = n(k_1 k_2) \in n\mathbb{Z}$.

Hence H is a subgroup of G.

$$n\mathbb{Z} \leq \mathbb{Z}$$
.

Diagram:

$$\mathbb{Z} \supset 2\mathbb{Z} \supset 4\mathbb{Z} \supset 8\mathbb{Z} \supset \cdots$$

Chain of nested subgroups under divisibility.

MANCHESTER Example 2: $SL_n(\mathbb{R})$ in $GL_n(\mathbb{R})$

Let

$$G = GL_n(\mathbb{R}) = \{ A \in M_{n \times n}(\mathbb{R}) \mid \det(A) \neq 0 \},$$

$$H = SL_n(\mathbb{R}) = \{ A \in G \mid \det(A) = 1 \}.$$

Proof.

- $I_n \in H$ since $\det(I_n) = 1$.
- If $A, B \in H$, then $\det(AB) = \det(A)\det(B) = 1 \cdot 1 = 1 \Rightarrow AB \in H.$
- If $A \in H$, then $\det(A^{-1}) = 1/\det(A) = 1 \Rightarrow A^{-1} \in H$.

Hence $SL_n(\mathbb{R}) \leq GL_n(\mathbb{R})$.

MANCHESIER Two Views: $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$

Subgroup Hierarchy (Inclusion)

$$GL_n(\mathbb{R})$$
 \uparrow All $\det \neq 0$
 $SL_n(\mathbb{R})$
 \uparrow Only $\det = 1$
 $\{I_n\}$

Idea: $SL_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$.

Key Idea

The special linear group, $SL_n(\mathbb{R})$, is the set of matrices where the determinant is exactly 1. This means it's the kernel (or null space) of the determinant function, and the whole relationship reveals that the quotient group $\mathsf{GL}_{\mathsf{n}}(\mathbb{R})/\mathsf{SL}_{\mathsf{n}}(\mathbb{R})$ is isomorphic to \mathbb{R}^* (all non-zero real numbers).

MANCHESTER Two Views: $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$

Short Exact Sequence (Quotient)

$$\textbf{1} \longrightarrow \text{SL}_{\textbf{n}}(\mathbb{R}) \longrightarrow \text{GL}_{\textbf{n}}(\mathbb{R}) \stackrel{\text{det}}{\longrightarrow} \mathbb{R}^* \longrightarrow \textbf{1}$$

The Sequence: $1 \to SL_n(\mathbb{R}) \to GL_n(\mathbb{R}) \xrightarrow{\det} \mathbb{R}^* \to 1$

Definition.

Let (R, +, .) be a set with two binary operations: addition (+) and multiplication (.). We say multiplication is *distributive over* addition if for all $a, b, c \in R$:

$$a.(b+c) = a.b + a.c$$
 and $(a+b).c = a.c + b.c.$

Remark:

This property ensures addition and multiplication interact consistently-fundamental to defining rings.

Definition

A *ring* is a set R together with two binary operations + (addition) and . (multiplication) such that the following properties hold for all $a,b,c\in R$:

- 1. a + (b + c) = (a + b) + c (Associativity of addition)
- 2. a + b = b + a (Commutativity of addition)
- 3. There exists $0 \in R$ such that a + 0 = a = 0 + a (Additive identity)
- 4. For every $a \in R$, there exists $(-a) \in R$ such that a + (-a) = 0 (Additive inverse)
- 5. a.(b.c) = (a.b).c (Associativity of multiplication)
- 6. a.(b+c) = a.b + a.c and (a+b).c = a.c + b.c (Distributivity)

Then (R, +) is an abelian group and (R, .) is a semigroup.

MANCHESTER Refinements of Rings

Definition (Commutative Ring).

A ring (R, +, .) is called *commutative* if a.b = b.a for all $a, b \in R$.

Definition (Ring with Unity).

A ring having an element 1 such that 1.a = a.1 = a for all $a \in R$ is called a ring with unity.

Definition (Division Ring).

A ring with unity where every nonzero element has a multiplicative inverse, but multiplication need not be commutative.

Definition (Field).

A *field* is a commutative division ring:

$$\forall a \neq 0, \exists a^{-1} \in R : a.a^{-1} = a^{-1}.a = 1.$$

MANCHESIER From Ring to Field: Structural Properties

A structure (R, +, ., 0, 1, -) satisfies the following ten axioms:

Additive properties:

1.
$$a + (b + c) = (a + b) + c$$

2.
$$a + b = b + a$$

3.
$$\exists 0 \in R \text{ s.t. } a + 0 = a$$

4.
$$\forall a \in R, \exists (-a) \text{ s.t.}$$

 $a + (-a) = 0$

Observation:

- 1–7 → Ring
- 1–8 → Ring with Unity
- 1–9 → Division Ring
- 1–10 → Field

Multiplicative and mixed properties:

5.
$$a.(b.c) = (a.b).c$$

6.
$$a.(b+c) = a.b + a.c$$

7.
$$(a+b).c = a.c + b.c$$

8.
$$\exists 1 \in R \text{ s.t. } a.1 = 1.a = a$$

9.
$$\forall a \neq 0, \exists a^{-1} \text{ s.t.}$$

 $a.a^{-1} = 1$

10.
$$a.b = b.a$$

Ring-like Structures

- 1. $(\mathbb{Z}, +, .)$ commutative ring with unity 1.
- 2. $(2\mathbb{Z}, +, .)$ commutative ring without unity.
- 3. $(\mathbb{N}, +, .)$ semiring (no additive inverses).
- 4. $(\mathbb{Q}, +, .)$ field.
- 5. $(\mathbb{R}, +, .)$ field.
- 6. $(\mathbb{C}, +, .)$ field.

Non-Commutative Rings and Division Rings

- 7 $(M_{n\times n}(\mathbb{R}),+,.)$ ring with unity, not commutative for n>1.
- 8 $(M_{n\times n}(\mathbb{Z}),+,.)$ commutative in addition only.
- 9 $(\mathbb{H},+,.)$ quaternions: division ring, not commutative.

$$\mathbb{H} = \{a+bi+cj+dk \mid a,b,c,d \in \mathbb{R}\}, \quad i^2 = j^2 = k^2 = ijk = -1.$$

- 10 $(\mathbb{Z}_n, +, \cdot)$ commutative ring with unity; field iff n prime.
- 11 Polynomial rings ($\mathbb{R}[x], +, ...$) commutative ring with unity.
- 12 Continuous functions (C([0,1]),+,.) commutative ring with unity.

Definition

Let *R* be a commutative ring with unity and *X* a nonempty set. Define

$$R^X = \{f : X \to R\}.$$

Define operations:

$$(f + g)(x) = f(x) + g(x),$$
 $(f + g)(x) = f(x) \cdot g(x).$

Define $\tilde{0}(x) = 0$ and $\tilde{1}(x) = 1$ for all $x \in X$.

Claim: $(R^X, \tilde{+}, \tilde{\cdot}, \tilde{0}, \tilde{1})$ is a commutative ring with unity.

MANCHESIER
$$(R^X, \tilde{+}, \tilde{\,\cdot\,})$$
 - Commutative Ring with Unity

Proof (Sketch):

Addition: For all $f, q, h \in \mathbb{R}^X$,

$$(f\tilde{+}(g\tilde{+}h))x = fx + (gx + hx) = (fx + gx) + hx = ((f\tilde{+}g)\tilde{+}h)x.$$

Hence associative. Commutativity and additive inverse follow pointwise.

Multiplication:

$$(f\,\widetilde{\cdot}\,(g\,\widetilde{\cdot}\,h))x=fx(gxhx)=(fxgx)hx=((f\,\widetilde{\cdot}\,g)\,\widetilde{\cdot}\,h)x.$$

Distributivity:

$$(f\tilde{\cdot}(g\tilde{+}h))x = fx(gx + hx) = fxgx + fxhx = (f\tilde{\cdot}g\tilde{+}f\tilde{\cdot}h)x.$$

Unity: 1x = 1 satisfies f : 1 = f.

Hence, all ring axioms hold pointwise.

MANCHESTER (1): Proof that R^X is a Commutative Ring

Solution.

The verification above confirms:

$$(R^X,\tilde{+},\,\tilde{\cdot}\,,\tilde{0},\tilde{1})$$

inherits all ring properties from R under pointwise operations. Hence, R^X is a commutative ring with unity.

MANCHESTER
1824

The University of Manchester
$$b+ab$$

MANCHESIER (2): Ring Structure on \mathbb{Q} via a * b = a + a

Define: a * b = a + b + ab for $a, b \in \mathbb{Q}$.

Check Associativity:

$$a*(b*c) = a + (b+c+bc) + a(b+c+bc) = a+b+c+ab+ac+bc+abc.$$

$$(a*b)*c = (a+b+ab)+c+(a+b+ab)c = a+b+c+ab+ac+bc+abc.$$

Hence associative. <

Unity: find e s.t. a * e = a.

$$a + e + ae = a \Rightarrow e(1+a) = 0 \Rightarrow e = 0.$$

So 0 is unity. \checkmark

Group of units: $a * b = 0 \Rightarrow a + b + ab = 0 \Rightarrow (1 + a)(1 + b) = 1$.

Hence unit a exists iff $1 + a \neq 0$, and inverse is b = -a/(1 + a).

Thus units: $\mathbb{O} \setminus \{-1\}$. 4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□></p

MANCHESTER (3): Real Interval Group with Parameter

Define for $a, b \in (-k, k)$:

$$a * b = \frac{a+b}{1+kb}.$$

Closure: If $a, b \in (-k, k)$, then |a * b| < k (exercise: verify using |a+b| < 2k and $1+kb > 1-k^2 > 0$).

Associativity: Compute:

$$a*(b*c) = \frac{a + \frac{b+c}{1+kc}}{1 + k\frac{b+c}{1+kc}} = \frac{a(1+kc) + b + c}{1 + k(a+b+c) + k^2(bc + ac + ab)}.$$

A tedious but direct algebra shows symmetry, hence associative.

Identity: 0, since $a * 0 = \frac{a+0}{1+0} = a$. \checkmark **Inverse:** $a^{-1} = -\frac{a}{1+ka}$. \checkmark Hence ((-k, k), *, 0) is a group (nonlinear addition law, used in hyperbolic geometry).

MANCHESTER (4): Constructing a Ring on \mathbb{R}^2

Define operations for $(a, b), (c, d) \in \mathbb{R}^2$:

$$(a,b)\tilde{+}(c,d) = (a+c,b+d), \quad (a,b)\tilde{\cdot}(c,d) = (ac,bc+ad).$$

Check Ring Properties:

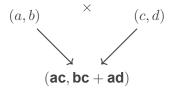
- Addition is componentwise abelian group:
- Multiplication associative: $(a,b)\tilde{\cdot}((c,d)\tilde{\cdot}(e,f))=(a(b+c)+\dots)$ (verify explicitly). \checkmark
- Distributivity holds componentwise:
- Unity element: (1,0) since

$$(a,b)\tilde{\cdot}(1,0) = (a,b).$$

• Commutativity: $(a,b)\tilde{\cdot}(c,d)=(ac,bc+ad)=(c,a)\tilde{\cdot}(a,b)$. Hence $(\mathbb{R}^2, \tilde{+}, \tilde{\cdot})$ is a commutative ring with unity (1, 0).

MANCHESTER Algebraic Structure of \mathbb{R}^2 with Custom Multiplication

Custom Multiplication Diagram



Interpretation and Clarification

This diagram illustrates the algebraic structure of \mathbb{R}^2 under the explicit multiplication rule:

$$(a,b)*(c,d) = (ac,bc+ad)$$

MANCHESTER Algebraic Structure of \mathbb{R}^2

Interpretation and Clarification

This diagram illustrates the algebraic structure of \mathbb{R}^2 under the explicit multiplication rule: (a, b) * (c, d) = (ac, bc + ad)

- With standard vector addition, this operation defines a Ring structure on \mathbb{R}^2
- Note on Affine Transformations: While the multiplication is commutative in the second component (bc + ad), the standard way to model affine transformations f(x) = ax + bis through composition, which results in the pair:

$$(a,b)\circ(c,d)=(\mathsf{ac},\mathsf{ad}+\mathsf{b})$$

 Your rule and the affine group rule are related, but they define different algebraic structures!

MANCHESTER 1824 The University of Manchester

- Introduced distributivity linking addition and multiplication, then defined ring, commutative ring, ring with unity, division ring, and field.
- Outlined 10 structural axioms progressing from semiring to field.
- Provided 12 diverse examples, including quaternions.
- Proved $(R^X, \tilde{+}, \tilde{\cdot})$ is a commutative ring with unity.
- Solved four constructive problems demonstrating new ring-like and group structures.
- Defined monoid and group homomorphisms with formal diagrams; proved that for group homomorphisms, one property implies the rest.
- Defined and illustrated isomorphisms with exponential—log example.
- Defined subgroup and proved simplified test using $a*b^{-1}$; worked examples: $(\mathbb{Z},+)$ and $(GL_n(\mathbb{R}),\times)$.

