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Definition: Monoid Homomorphism

Definition. Let (M, ∗, eM ) and (N, ◦, eN ) be monoids. A function

f : M → N is called a monoid homomorphism if it satisfies:

1. Compatibility with operation:

f(a ∗ b) = f(a) ◦ f(b), ∀a, b ∈ M.

2. Preservation of identity:

f(eM ) = eN .

Diagrammatic Representation:

M ×M N ×N

M N

f × f

∗ ◦

f
Commutativity of the diagram

encodes: f(a ∗ b) = f(a) ◦ f(b). 2



Examples of Monoid Homomorphisms

Example 1.

(N,+, 0) and (N,×, 1) Define f : N → N by f(n) = 2n.

f(a+ b) = 2a+b = 2a · 2b = f(a)f(b).

Hence f is a monoid homomorphism.

Example 2.

(R,+, 0) and (R+,×, 1) Define f(x) = ex.

f(x+ y) = ex+y = exey = f(x)f(y).

Thus f is a monoid (and in fact group) homomorphism.
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Definition: Group Homomorphism

Definition.

Let (G, ∗, eG, iG) and (H, ◦, eH , iH) be groups. A map f : G → H
is called a group homomorphism if it satisfies:

1. f(a ∗ b) = f(a) ◦ f(b) (operation preservation)

2. f(eG) = eH (identity preservation)

3. f(iG(a)) = iH(f(a)) (inverse preservation)

Diagrammatic form:

G×G H ×H

G H

f × f

∗ ◦

f
The

diagram commutes if f(a ∗ b) = f(a) ◦ f(b).
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Homomorphism Property Reduction

Proposition.

Let f : G → H be a function between groups. If f satisfies only

f(a ∗ b) = f(a) ◦ f(b),

then automatically:

f(eG) = eH , f(a−1) = f(a)−1.

Proof. f(eG) = f(eG ∗ eG) = f(eG) ◦ f(eG) ⇒ f(eG) = eH .
Next,

eH = f(eG) = f(a ∗ a−1) = f(a) ◦ f(a−1) ⇒ f(a−1) = f(a)−1. �

Hence: Only property (1) is needed to check; others follow

automatically.
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Isomorphism of Monoids or Groups

Definition.

Let (X, ∗, eX) and (Y, ◦, eY ) be monoids (or groups). A map

f : X → Y is called an isomorphism if:

1. f is a homomorphism;

2. f is bijective;

3. f−1 is also a homomorphism.

Remark.

If f is bijective and satisfies f(a ∗ b) = f(a) ◦ f(b), then its inverse

f−1 automatically respects the operations. Hence, bijectivity is

enough to guarantee isomorphism.

Notation:

(X, ∗, eX) ∼= (Y, ◦, eY ).

Read as “X and Y are isomorphic as monoids (or groups).”
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Example: Exponential Isomorphism

Example.

(R,+, 0)
f(x)=ex−−−−−→ (R+,×, 1).

Check:

f(x+ y) = ex+y = exey = f(x)f(y), f(0) = 1.

Inverse map: f−1(y) = ln(y). Then

ln(xy) = ln(x) + ln(y).

Hence both f and f−1 are homomorphisms.

(R,+) ∼= (R+,×).
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Subgroup

Definition.

Let (G, ∗, e, i) be a group. A subset H ⊆ G is a subgroup of G, if it
is a group with the same operations restricted to H. In other

words, we need:

1. e ∈ H (contains identity),

2. ∀a, b ∈ H, a ∗ b ∈ H (closed under operation),

3. ∀a ∈ H, i(a) ∈ H (closed under inverses).

We denote it as H ≤ G.
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Simplified Subgroup Test

Remark.

The above three properties can be reduced to a single condition:

∀a, b ∈ H, a ∗ b−1 ∈ H.

Proof.

• Let a = b = e: gives e ∈ H.

• For a, b ∈ H, b−1 ∈ H so a ∗ b−1 ∈ H ⇒ closure.

• Taking a = e, e ∗ b−1 = b−1 ∈ H gives closure under inverses.

Hence condition (4) implies all three original subgroup properties.

�
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Example 1: (Z,+) and nZ

Let G = (Z,+, 0) and H = nZ = {nk : k ∈ Z}.
Proof.

• 0 = n · 0 ∈ nZ.
• For a = nk1, b = nk2 ∈ nZ, a− b = n(k1 − k2) ∈ nZ.

Hence H is a subgroup of G.

nZ ≤ Z.

Diagram:

Z ⊃ 2Z ⊃ 4Z ⊃ 8Z ⊃ · · ·

Chain of nested subgroups under divisibility.
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Example 2: SLn(R) in GLn(R)

Let

G = GLn(R) = {A ∈ Mn×n(R) | det(A) 6= 0},

H = SLn(R) = {A ∈ G | det(A) = 1}.

Proof.

• In ∈ H since det(In) = 1.

• If A,B ∈ H, then

det(AB) = det(A)det(B) = 1 · 1 = 1 ⇒ AB ∈ H.

• If A ∈ H, then det(A−1) = 1/ det(A) = 1 ⇒ A−1 ∈ H.

Hence SLn(R) ≤ GLn(R).
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Two Views: GLn(R), SLn(R)

Subgroup Hierarchy

(Inclusion)

GLn(R)

SLn(R)

{In}

All det 6= 0

Only det = 1

Idea: SLn(R) is a subgroup

of GLn(R).

Key Idea

The special linear group, SLn(R), is
the set of matrices where the

determinant is exactly 1. This

means it’s the kernel (or null

space) of the determinant function,

and the whole relationship reveals

that the quotient group

GLn(R)/SLn(R) is isomorphic to R∗

(all non-zero real numbers).
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Two Views: GLn(R), SLn(R)

Short Exact Sequence (Quotient)

1 SLn(R) GLn(R) R∗ 1
det

The Sequence: 1 → SLn(R) → GLn(R)
det−−→ R∗ → 1
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Distributivity

Definition.

Let (R,+, .) be a set with two binary operations: addition (+) and
multiplication (.). We say multiplication is distributive over

addition if for all a, b, c ∈ R:

a.(b+ c) = a.b+ a.c and (a+ b).c = a.c+ b.c.

Remark:

This property ensures addition and multiplication interact

consistently-fundamental to defining rings.
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Ring

Definition

A ring is a set R together with two binary operations + (addition)

and . (multiplication) such that the following properties hold for all

a, b, c ∈ R:

1. a+ (b+ c) = (a+ b) + c (Associativity of addition)

2. a+ b = b+ a (Commutativity of addition)

3. There exists 0 ∈ R such that a+ 0 = a = 0 + a (Additive

identity)

4. For every a ∈ R, there exists (−a) ∈ R such that

a+ (−a) = 0 (Additive inverse)

5. a.(b.c) = (a.b).c (Associativity of multiplication)

6. a.(b+ c) = a.b+ a.c and (a+ b).c = a.c+ b.c (Distributivity)

Then (R,+) is an abelian group and (R, .) is a semigroup.
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Refinements of Rings

Definition (Commutative Ring).

A ring (R,+, .) is called commutative if a.b = b.a for all a, b ∈ R.

Definition (Ring with Unity).

A ring having an element 1 such that 1.a = a.1 = a for all a ∈ R is

called a ring with unity.

Definition (Division Ring).

A ring with unity where every nonzero element has a

multiplicative inverse, but multiplication need not be commutative.

Definition (Field).

A field is a commutative division ring:

∀a 6= 0, ∃a−1 ∈ R : a.a−1 = a−1.a = 1.
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From Ring to Field: Structural Properties

A structure (R,+, ., 0, 1,−) satisfies the following ten axioms:

Additive properties:

1. a+ (b+ c) = (a+ b) + c

2. a+ b = b+ a

3. ∃ 0 ∈ R s.t. a+ 0 = a

4. ∀a ∈ R, ∃(−a) s.t.
a+ (−a) = 0

Multiplicative and mixed

properties:

5. a.(b.c) = (a.b).c

6. a.(b+ c) = a.b+ a.c

7. (a+ b).c = a.c+ b.c

8. ∃ 1 ∈ R s.t. a.1 = 1.a = a

9. ∀a 6= 0,∃a−1 s.t.

a.a−1 = 1

10. a.b = b.a
Observation:

• 1–7 → Ring

• 1–8 → Ring with Unity

• 1–9 → Division Ring

• 1–10 → Field
17



Examples

Ring-like Structures

1. (Z,+, .) — commutative ring with unity 1.

2. (2Z,+, .) — commutative ring without unity.

3. (N,+, .) — semiring (no additive inverses).

4. (Q,+, .) — field.

5. (R,+, .) — field.

6. (C,+, .) — field.
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Examples

Non-Commutative Rings and Division Rings

7 (Mn×n(R),+, .) — ring with unity, not commutative for n > 1.

8 (Mn×n(Z),+, .) — commutative in addition only.

9 (H,+, .) — quaternions: division ring, not commutative.

H = {a+bi+cj+dk | a, b, c, d ∈ R}, i2 = j2 = k2 = ijk = −1.

10 (Zn,+, ·) — commutative ring with unity; field iff n prime.

11 Polynomial rings (R[x],+, .) — commutative ring with unity.

12 Continuous functions (C([0, 1]),+, .) — commutative ring

with unity.
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Function Ring RX

Definition

Let R be a commutative ring with unity and X a nonempty set.

Define

RX = {f : X → R}.

Define operations:

(f+̃g)(x) = f(x) + g(x), (f ·̃ g)(x) = f(x) · g(x).

Define 0̃(x) = 0 and 1̃(x) = 1 for all x ∈ X.

Claim: (RX , +̃, ·̃ , 0̃, 1̃) is a commutative ring with unity.

20



(RX , +̃, ·̃ ) - Commutative Ring with Unity

Proof (Sketch):

Addition: For all f, g, h ∈ RX ,

(f+̃(g+̃h))x = fx+ (gx+ hx) = (fx+ gx) + hx = ((f+̃g)+̃h)x.

Hence associative. Commutativity and additive inverse follow

pointwise.

Multiplication:

(f ·̃ (g ·̃h))x = fx(gxhx) = (fxgx)hx = ((f ·̃ g) ·̃h)x.

Distributivity:

(f ·̃ (g+̃h))x = fx(gx+ hx) = fxgx+ fxhx = (f ·̃ g+̃f ·̃h)x.

Unity: 1̃x = 1 satisfies f ·̃ 1̃ = f .
Hence, all ring axioms hold pointwise. �
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(1): Proof that RX is a Commutative Ring

Solution.

The verification above confirms:

(RX , +̃, ·̃ , 0̃, 1̃)

inherits all ring properties from R under pointwise operations.

Hence, RX is a commutative ring with unity.
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(2): Ring Structure on Q via a ∗ b = a +
b+ ab

Define: a ∗ b = a+ b+ ab for a, b ∈ Q.
Check Associativity:

a∗(b∗c) = a+(b+c+bc)+a(b+c+bc) = a+b+c+ab+ac+bc+abc.

(a∗b)∗c = (a+b+ab)+c+(a+b+ab)c = a+b+c+ab+ac+bc+abc.

Hence associative.

Unity: find e s.t. a ∗ e = a.

a+ e+ ae = a ⇒ e(1 + a) = 0 ⇒ e = 0.

So 0 is unity.
Group of units: a ∗ b = 0 ⇒ a+ b+ ab = 0 ⇒ (1 + a)(1 + b) = 1.
Hence unit a exists iff 1 + a 6= 0, and inverse is b = −a/(1 + a).
Thus units: Q \ {−1}.
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(3): Real Interval Group with Parameter

k > 0

Define for a, b ∈ (−k, k):

a ∗ b = a+ b

1 + kb
.

Closure: If a, b ∈ (−k, k), then |a ∗ b| < k (exercise: verify using

|a+ b| < 2k and 1 + kb > 1− k2 > 0).
Associativity: Compute:

a ∗ (b ∗ c) =
a+ b+c

1+kc

1 + k b+c
1+kc

=
a(1 + kc) + b+ c

1 + k(a+ b+ c) + k2(bc+ ac+ ab)
.

A tedious but direct algebra shows symmetry, hence associative.

Identity: 0, since a ∗ 0 = a+0
1+0 = a. Inverse: a−1 = − a

1+ka .

Hence ((−k, k), ∗, 0) is a group (nonlinear addition law, used in

hyperbolic geometry). 24



(4): Constructing a Ring on R2

Define operations for (a, b), (c, d) ∈ R2:

(a, b)+̃(c, d) = (a+ c, b+ d), (a, b) ·̃ (c, d) = (ac, bc+ ad).

Check Ring Properties:

• Addition is componentwise abelian group:

• Multiplication associative:

(a, b) ·̃ ((c, d) ·̃ (e, f)) = (a(b+ c) + . . . ) (verify explicitly).

• Distributivity holds componentwise:

• Unity element: (1, 0) since

(a, b) ·̃ (1, 0) = (a, b).

• Commutativity: (a, b) ·̃ (c, d) = (ac, bc+ ad) = (c, a) ·̃ (a, b).
Hence (R2, +̃, ·̃ ) is a commutative ring with unity (1, 0).
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Algebraic Structure of R2 with Custom

Multiplication

(a, b) (c, d)
×

(ac,bc+ ad)

Custom Multiplication Diagram

Interpretation and Clarification

This diagram illustrates the algebraic structure of R2 under the

explicit multiplication rule:

(a, b) ∗ (c, d) = (ac, bc+ ad)
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Algebraic Structure of R2

Interpretation and Clarification

This diagram illustrates the algebraic structure of R2 under the

explicit multiplication rule: (a, b) ∗ (c, d) = (ac, bc+ ad)

• With standard vector addition, this operation defines a Ring

structure on R2.

• Note on Affine Transformations: While the multiplication is

commutative in the second component (bc+ ad), the
standard way to model affine transformations f(x) = ax+ b
is through composition, which results in the pair:

(a, b) ◦ (c, d) = (ac,ad+ b)

• Your rule and the affine group rule are related, but they

define different algebraic structures!
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Summary

• Introduced distributivity linking addition and multiplication,

then defined ring, commutative ring, ring with unity, division

ring, and field.

• Outlined 10 structural axioms progressing from semiring to

field.

• Provided 12 diverse examples, including quaternions.

• Proved (RX , +̃, ·̃ ) is a commutative ring with unity.

• Solved four constructive problems demonstrating new

ring-like and group structures.

• Defined monoid and group homomorphisms with formal

diagrams; proved that for group homomorphisms, one

property implies the rest.

• Defined and illustrated isomorphisms with exponential–log

example.

• Defined subgroup and proved simplified test using a ∗ b−1;

worked examples: (Z,+) and (GLn(R),×). 28



Thanks
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