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Definition: Monoid Homomorphism

Definition. Let (M, x,e);) and (IV, o, en) be monoids. A function
f: M — N is called a monoid homomorphism if it satisfies:
1. Compatibility with operation:
flaxb) = fa)o f(b), Va,be M.
2. Preservation of identity:

flem) =en.

Diagrammatic Representation:
fxf
MxM ——— NxN
* | o

M N

/ Commutativity of the diagram
encodes: f(ax*xb) = f(a)o f(b).




Examples of Monoid Homomorphisms
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Example 1.

(N, +,0) and (N, x, 1) Define f : N — N by f(n) = 2.
fla+0b) =2 =2°.2° = f(a)f (D).

Hence f is a monoid homomorphism.

Example 2.
(R,+,0) and (R*, x, 1) Define f(z) = €”.

fla+y) =" =e"e = f(z)f(y).

Thus f is a monoid (and in fact group) homomorphism.



Definition: Group Homomorphism
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Definition.

Let (G, *,eq,ig) and (H,o,ep,ip) be groups. Amap f: G — H
is called a group homomorphism if it satisfies:

1. flaxb) = f(a)o f(b) (operation preservation)
2. fleqg) =epn (identity preservation)
3. flig(a)) =1ig(f(a)) (inverse preservation)
>
GxG — HxH
* | o
G H
Diagrammatic form: / The

diagram commutes if f(a *xb) = f(a) o f(b).



Homomorphism Property Reduction
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Proposmon.

Let f : G — H be a function between groups. If f satisfies only
flaxb) = f(a)o f(b),
then automatically:

fleg) =en, fla™')=fla)™"

Proof. f(eq) = f(ea *eq) = f(ea) o fleg) = fleq) = en.
Next,

e = fleg) = flaxa™!) = fa)o fa™') = fla™) = f(a)™". O

Hence: Only property (1) is needed to check; others follow
automatically.



Isomorphism of Monoids or Groups
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Definition.

Let (X, *,ex) and (Y, o, ey ) be monoids (or groups). A map
f: X — Y is called an isomorphism if:

1. fis a homomorphism;

2. fis bijective;

3. f~lis also a homomorphism.

If f is bijective and satisfies f(a x b) = f(a) o f(b), then its inverse
f~! automatically respects the operations. Hence, bijectivity is
enough to guarantee isomorphism.
Notation:

(X, *, 6)() = (K o, 6y).

Read as “X and Y are isomorphic as monoids (or groups).”



Example: Exponential Isomorphism
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(R, +,0) L= R+, x, 1),

Check:
flaty) ="V =e" = f(z)fy), f(0)=1
Inverse map: f~'(y) = In(y). Then
In(zy) = In(z) + In(y).
Hence both f and f~! are homomorphisms.

(R, +) = (RT, x).



ISR S grour
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Let (G,x*,e,i) be a group. A subset H C G is a subgroup of G, if it
is a group with the same operations restricted to H. In other
words, we need:

1. ee H (contains identity),
2. Ya,be H, axbe H (closed under operation),
3.Vae H, i(a) e H (closed under inverses).

We denote itas H < G.



Simplified Subgroup Test
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The above three properties can be reduced to a single condition:
Va,be H, axb'eH.

Proof.
e Lleta=0b=c:givesec H.
e Fora,bc H,b~' ¢ Hsoaxb~! € H = closure.
e Takinga =e¢,exb! =b~! € H gives closure under inverses.

Hence condition (4) implies all three original subgroup properties.
O



Example 1: (Z,+) and nZ

The University of Manchester

Let G = (Z,+,0)and H = nZ = {nk : k € Z}.
Proof.

e 0=n-0¢€nZ.
e Fora=nky,b=nks € nZ,a—b=mn(k — ko) € nZ.
Hence H is a subgroup of G.

n? < 7.

Diagram:
2252254228 D ---

Chain of nested subgroups under divisibility.



Example 2: SL,(R) in GL,(R)
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Let
G =GL,(R) ={A € M,«xn(R) | det(A) # 0},
H=SL,(R)={AcG|det(A) =1}.
Proof.
e I, € H since det(I,,) = 1.
e If A, B € H, then
det(AB) =det(A)det(B)=1-1=1= AB € H.
o If Ac H,thendet(A~!
Hence SL,(R) < GL,(R).

y=1/det(d)=1= A" € H.



RSN Two Views: GLy(R), SLa(R)

University of Manchester

Subgroup Hierarchy
(Inclusion)

GL.(R)

All det £ 0
SL,(R)

A

Only det =1
{In}

Idea: SLn(R) is a subgroup
of GLy(R).

Key Idea

The special linear group, SLy(R), is
the set of matrices where the
determinant is exactly 1. This
means it's the kernel (or null
space) of the determinant function,
and the whole relationship reveals
that the quotient group
GL,(R)/SLn(R) is isomorphic to R*
(all non-zero real numbers).



SR Two Views: GL,(R), SLy(R)
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Short Exact Sequence (Quotient)

t
1 — SLn(R) —— GLa(R) — 2L, R~ 1

The Sequence: 1 — SL,(R) - GL,(R) LR 51



Distributivity
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Definition.

Let (R, +,.) be a set with two binary operations: addition (+) and
multiplication (.). We say multiplication is distributive over
addition if for all a,b, c € R:

a.(b+c)=ab+a.c and (a+b).c=a.c+b.c.

Remark:

This property ensures addition and multiplication interact
consistently-fundamental to defining rings.



IR in
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A ring is a set R together with two binary operations + (addition)
and . (multiplication) such that the following properties hold for all

a,b,c € R:

1. a+(b+c)=(a+b)+c (Associativity of addition)

2. a+b=b+a (Commutativity of addition)

3. There exists 0 € Rsuchthata+0=a=0+a (Additive
identity)

4. For every a € R, there exists (—a) € R such that
a+(—a)=0 (Additive inverse)

5. a.(b.c) = (a.b).c (Associativity of multiplication)

6. a.(b+c¢)=a.b+a.cand (a+b).c=a.c+b.c (Distributivity)

Then (R, +) is an abelian group and (R, .) is a semigroup.



Refinements of Rings
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Definition (Commutative Ring).

Aring (R, +,.) is called commutative if a.b = b.a for all a,b € R.
Definition (Ring with Unity).

A ring having an element 1 such that 1.a = a.1 =aforalla € Ris
called a ring with unity.

Definition (Division Ring).

A ring with unity where every nonzero element has a
multiplicative inverse, but multiplication need not be commutative.

Definition (Field).

A field is a commutative division ring:

Va#0,Ja ' eR: aat=ata=1.




From Ring to Field: Structural Properties
—

A structure (R, +, .,0, 1, —) satisfies the following ten axioms:

Additive properties: Multiplicative and mixed
1. a4+ (b+c)=(a+Db) +c properties:
2. a+b=b+a 5. a.(b.c) = (a.b).c
3.30c Rst.a+0=a 6. a.(b+c)=ab+ac
4. Ya € R,3(—a) s.t. 7. (a+b).c=ac+bc
a+(—a)=0 8. dJ1eRst al=1la=a
9. Va #0,3a ! s.t.
Observation: a.a”l =1
10. a.b=b.a

e 1-7 — Ring

e 1-8 — Ring with Unity
e 1-9 — Division Ring

e 1-10 — Field



Examples
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Ring-like Structures

1. (Z,+,.) — commutative ring with unity 1.
2. (2Z,+,.) — commutative ring without unity.
3. (N, +,.) — semiring (no additive inverses).
4. (Q,+,.) —field.

5. (R,+,.) —field

6. (C,+,.) —field.



Examples
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Non-Commutative Rings and Division Rings

7 (Myxn(R),+,.) — ring with unity, not commutative for n > 1.
8 (Myxn(Z),+,.) — commutative in addition only.
9 (H, +,.) — quaternions: division ring, not commutative.

H = {a+bi+cj+dk | a,b,c,d € R}, % =32 =k?=ijk=—1.

10 (Zy,+,-) — commutative ring with unity; field iff n prime.
11 Polynomial rings (R[z], +,.) — commutative ring with unity.

12 Continuous functions (C([0, 1]), +, .) — commutative ring
with unity.



Function Ring R¥
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Let R be a commutative ring with unity and X a nonempty set.
Define
X —{f:X > R}

Define operations:
(f+9)(@) = f(z) +g(z),  (f9)(z) = f(=z) - g(z).

Define O(z) = 0 and 1(z) = 1 forall z € X.
Claim: (R¥, {L ,0,1) is a commutative ring with unity.

20



(RX,F, 7) - Commutative Ring with Unity
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Proof (Sketch):
Addition: Forall f,g,h € RX,

(f+(g+h)x = fz + (gz + hz) = (fr + gx) + hae = ((f+g)+h)z.

Hence associative. Commutativity and additive inverse follow
pointwise.
Multiplication:

(f=(g7h))x = fr(gahz) = (frgz)hz = ((f~g)*h)z.
Distributivity:
(f*(g+h)z = fo(gz + ha) = fegr + fahz = (f*g+f~h)z.

Unity: 1z = 1 satisfies f71 = f.
Hence, all ring axioms hold pointwise. [

21



(1): Proof that RX is a Commutative Ring
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The verification above confirms:
(RX’ -T-’ :(’ 6’ i)

inherits all ring properties from R under pointwise operations.
Hence, R¥ is a commutative ring with unity.

22



(2): Ring Structure on Q viaa b = a +

Th?)wvcmtyoﬂ nchester

a

Define: a xb=a+ b+ abfora,b e Q.
Check Associativity:

ax(bxc) = a+(b+c+bc)+a(b+c+bc) = a+b+c+ab+ac+bc+abe.

(axb)xc = (a+b+ab)+c+(a+b+ab)c = a+b+c+ab+ac+bc+abe.

Hence associative. v
Unity: findes.t. axe = a.

at+et+ae=a=e(l+a)=0=e=0.

So 0 is unity. v

Group of units: axb=0=a+b+ab=0= (1+a)(1+0b) =1.

Hence unit a exists iff 1 + a # 0, and inverseis b = —a/(1 + a).
Thus units: Q \ {—1}.

23



(3): Real Interval Group with Parameter
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k>0

Define for a,b € (—k, k):

_a+b
1+ kb

Closure: Ifa,b € (—k, k), then |a % b| < k (exercise: verify using
la+b] <2kand 1+ kb >1—k? > 0).
Associativity: Compute:

a*b

a+ &% a(l+ke)+b+c

U+ kgte ~ T+ k(a+b+c)+ k2 (be+ ac+ab)’

ax(bxc)=

A tedious but direct algebra shows symmetry, hence associative.

v’
Identity: 0, since a 0 = ‘1%8 = a. v Inverse: ¢ 1 = — 1 v
Hence ((—k, k), ,0) is a group (nonlinear addition law, used in

hyperbolic geometry).

24



(4): Constructing a Ring on R?
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Define operations for (a,b), (c,d) € R?:

(a,b)+(c,d) = (a+c,b+d), (a,b)>(c,d)= (ac, bc+ ad).

Check Ring Properties:
e Addition is componentwise abelian group: v
e Multiplication associative:
(a,0)~((e,d)~ (e, f)) = (a(b+¢) + ...) (verify explicitly). v
e Distributivity holds componentwise: v
e Unity element: (1,0) since

(a,b)7(1,0) = (a,b).

e Commutativity: (a,b)"(c,d) = (ac,bc + ad) = (¢,a) (a,b). v*
Hence (R?, +, 7) is a commutative ring with unity (1,0).

25



Algebraic Structure of R? with Custom
"Multiplication
Custom Multiplication Diagram

X

(a,b) (c,d)

(ac,bc + ad)

Interpretation and Clarification

This diagram illustrates the algebraic structure of R? under the
explicit multiplication rule:

(a,b) * (c,d) = (ac,bc + ad)

26



Algebraic Structure of R2
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Interpretatlon and Clarification

This diagram illustrates the algebraic structure of R? under the
explicit multiplication rule: (a,b) * (¢, d) = (ac, bc + ad)
e With standard vector addition, this operation defines a Ring
structure on R2.

¢ Note on Affine Transformations: While the multiplication is
commutative in the second component (bc + ad), the
standard way to model affine transformations f(z) = ax + b
is through composition, which results in the pair:

(a,b) o (c,d) = (ac,ad + b)

e Your rule and the affine group rule are related, but they
define different algebraic structures!

27



Summary

The University of Manchester

Introduced distributivity linking addition and multiplication,
then defined ring, commutative ring, ring with unity, division
ring, and field.

Outlined 10 structural axioms progressing from semiring to
field.

Provided 12 diverse examples, including quaternions.
Proved (RY, +, ) is a commutative ring with unity.

Solved four constructive problems demonstrating new
ring-like and group structures.

Defined monoid and group homomorphisms with formal
diagrams; proved that for group homomorphisms, one
property implies the rest.

Defined and illustrated isomorphisms with exponential-log
example.

Defined subgroup and proved simplified test using a * b~ 1;
worked examples: (Z,+) and (GL,(R), x).

28
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