

Combinatorial Mesh Calculus (CMC): Lecture 4

Lectured by: Dr. Kiprian Berbatov¹
Lecture Notes Compiled by: Muhammad Azeem¹
Under the supervision of: Prof. Andrey P. Jivkov¹

 $^{1} {\tt Department\ of\ Mechanical\ and\ Aerospace\ Engineering,\ The\ University\ of\ Manchester,\ Oxford\ Road,}$

Manchester M13 9PL, UK

MANCHESTER Module over a Commutative Ring with Unity (CRWU)

Definition.

Let R be a commutative ring with unity (CRWU), and let (V,+,-,0) be an abelian (commutative) group under addition. A scalar multiplication $*: R \times V \to V$ makes V an R-module if the following hold for all $\lambda, \mu \in R$ and $v, w \in V$:

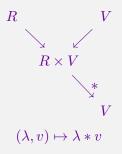
$$\begin{array}{ll} (\lambda\mu)*v=\lambda*(\mu*v) & \text{(Associativity of scalar mult.)} \\ (\lambda+\mu)*v=\lambda*v+\mu*v & \text{(Distributivity over ring addition)} \\ \lambda*(v+w)=\lambda*v+\lambda*w & \text{(Distributivity over module addition)} \\ 1_R*v=v & \text{(Unital condition)} \end{array}$$

Notation: (V, +, *, 0) is called an R-module. If R is a field, V is a vector space over R.

MANCHESIER Interpretation and Diagram

Idea

Modules generalize vector spaces—where scalars come not from a field, but from a ring.



MANCHESIER Examples of R-Modules

Let R be a CRWU, $m, n \in \mathbb{N}$.

1. Coordinate Module:

$$R^n = \{(a_1, \dots, a_n) \mid a_i \in R\}.$$

Addition and scalar multiplication defined by

$$(a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n),$$

 $\lambda * (a_1, \dots, a_n) = (\lambda a_1, \dots, \lambda a_n).$

Then $(R^n, +, *)$ is an R-module. When R is a field, this is a vector space.

2. Matrix Module:

$$M_{m\times n}(R) = \{ [a_{ij}]_{m\times n} \mid a_{ij} \in R \},\$$

with addition $(A + B)_{ij} = a_{ij} + b_{ij}$, and scalar multiplication $(\lambda A)_{ij} = \lambda a_{ij}$

- **3. Zero Module:** $\{0\}$ with r*0=0 for all $r \in R$.
- **4. Free Module:** Let $S = \{e_1, \dots, e_n\}$ be a finite set. Define

$$\operatorname{Free}_R(S) = \left\{ \sum_{i=1}^n \lambda_i e_i \mid \lambda_i \in R \right\}.$$

Addition and scalar multiplication:

$$(\lambda_1 e_1 + \dots + \lambda_n e_n) + (\mu_1 e_1 + \dots + \mu_n e_n) = (\lambda_1 + \mu_1) e_1 + \dots + (\lambda_n + \mu_n) e_1 + \dots + (\lambda_n e_n) = (r\lambda_1) e_1 + \dots + (r\lambda_n) e_n.$$

Then $Free_R(S)$ is an R-module.

MANCHESTER Free Module on Infinite Basis

If S is infinite, $Free_R(S)$ consists of **finite linear combinations**:

$$\lambda_1 e_{i_1} + \dots + \lambda_k e_{i_k}, \quad \lambda_i \in R.$$

Example: $S = \{1, x, x^2, x^3, ...\}$ then

$$\mathsf{Free}_R(S) = R[x],$$

the ring of polynomials over R—a free R–module with basis

$$\{1, x, x^2, \dots\}$$

.

MANCHESIER Linear Independence and Span

Definition: Let V be an R-module, $e_1, \ldots, e_n \in V$.

1. Linear Independence: $\{e_1, \ldots, e_n\}$ is linearly independent if

$$\lambda_1 e_1 + \dots + \lambda_n e_n = 0 \Rightarrow \lambda_1 = \dots = \lambda_n = 0.$$

2. Linear Dependence: The set is linearly dependent if there exist coefficients, not all zero, satisfying

$$\lambda_1 e_1 + \dots + \lambda_n e_n = 0.$$

3. Span:

$$\mathsf{Span}_R\{e_1,\ldots,e_n\} = \left\{\sum_{i=1}^n \lambda_i e_i \mid \lambda_i \in R\right\}.$$

4. Basis: A set $\{e_1, \ldots, e_n\}$ is a basis of V if it is linearly independent and spans V.

MANCHESIER Linear independence over $\mathbb Z$ and $\mathbb Q$

Example

Let R be \mathbb{Q} or \mathbb{Z} , $V = \mathbb{R}^2$, $v_1 = (2,0)$, $v_2 = (3,0)$. Then the vectors v_1 and v_2 are linearly dependent since $3v_1 - 2v_2 = 0$. When $R = \mathbb{Q}$, we can find reciprocals, and so $v_2 = (3/2)v_1$. However, when $R = \mathbb{Z}$, we cannot express one of the vectors as a multiple of the other.

Remark

If R is a field and $\mu_1 v_1 + \cdots + \mu_n v_n = 0$ with $\mu_i \neq 0$, then we can divide:

$$v_i = \sum_{j \neq i} \frac{-\mu_j}{\mu_i} v_j.$$

However, for general modules (where R is not a field), division may not be possible, so such reduction cannot be performed.

Example:

For \mathbb{R}^n define

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1).$$

Claim: $\{e_1, \ldots, e_n\}$ is a basis of \mathbb{R}^n .

Proof:

• Every $v = (a_1, \dots, a_n) \in \mathbb{R}^n$ can be written uniquely as

$$v = a_1 e_1 + \dots + a_n e_n.$$

• If $\sum \lambda_i e_i = 0$, then all $\lambda_i = 0$. Hence independence.

Therefore $\{e_i\}$ is a basis.

MANCHESTER Matrix Unit Basis of $M_{m \times n}(R)$

Example:

For each (i, j) define $E_{ij} \in M_{m \times n}(R)$ by

$$(E_{ij})_{kl} = \begin{cases} 1, & k = i, \ l = j, \\ 0, & \text{otherwise.} \end{cases}$$

Then $\{E_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq n\}$ is a basis of $M_{m \times n}(R)$.

Example (for m=n=2):

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Any
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 can be written as

$$A = aE_{11} + bE_{12} + cE_{21} + dE_{22}.$$

MANCHESTER Other Basis Examples

Zero Module:

 ϕ is a basis of $\{0\}$.

Free Module:

If S is a set, S itself forms a basis of $Free_R(S)$.

Polynomial Module:

For
$$S = \{1, x, x^2, \dots\}$$
,

$$R[x] = \mathsf{Free}_R(S)$$

with basis $\{1, x, x^2, \dots\}$.

MANCHESTER Uniqueness of Representation

Proposition.

Let R be a CRWU, V an R-module, and $S = \{e_1, \ldots, e_n\} \subseteq V$. Then S is a basis of V if and only if every $v \in V$ can be expressed uniquely as

$$v = \lambda_1 e_1 + \dots + \lambda_n e_n, \quad \lambda_i \in R.$$

Proof. (\Rightarrow) If S is a basis, then by definition it spans V, so such λ_i exist. Suppose $v = \sum \lambda_i e_i = \sum \mu_i e_i$. Then $\sum (\lambda_i - \mu_i) e_i = 0$. Linear independence implies $\lambda_i - \mu_i = 0$ for all i. Hence uniqueness.

 (\Leftarrow) If every v has a unique representation, then:

- Existence implies S spans V.
- Uniqueness implies S is linearly independent.

Thus S is a basis. \square

Definition.

Let R be a CRWU, V an R-module. A subset $W \subseteq V$ is called a **submodule** of V if:

- 1. (W, +) is a subgroup of (V, +),
- **2**. $\forall r \in R, w \in W : r * w \in W$.

Equivalently, \boldsymbol{W} is a submodule iff

$$\forall \lambda, \mu \in R, \ v, w \in W, \quad \lambda v + \mu w \in W.$$

MANCHESTER Null Space and Image as Submodules

Let
$$A \in M_{m \times n}(R)$$
.

1. Null Space:

$$Null(A) = \{ x \in R^n \mid Ax = 0_{R^m} \}.$$

Proof: If $x, y \in \text{Null}(A)$ and $\lambda, \mu \in R$,

$$A(\lambda x + \mu y) = \lambda Ax + \mu Ay = 0.$$

Hence closed under addition and scalar multiplication → submodule of \mathbb{R}^n .

2. Image:

$$Im(A) = \{Ax \mid x \in R^n\} \subseteq R^m.$$

If $y_1 = Ax_1$, $y_2 = Ax_2$, then for any $\lambda, \mu \in R$,

$$\lambda y_1 + \mu y_2 = A(\lambda x_1 + \mu x_2) \in \operatorname{Im}(A).$$

Hence Im(A) is a submodule of R^m . \square

MANCHESTER Example with Numerical Matrix

Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -8 \end{bmatrix} \in M_{2\times 3}(\mathbb{Q}).$$

Find Null(A):

$$Ax = 0 \Rightarrow \begin{cases} x_1 + 2x_2 + 3x_3 = 0, \\ -2x_1 - 4x_2 - 8x_3 = 0. \end{cases}$$

Second equation is $-2 \times$ first, redundant. Solve first:

$$x_1 = -2x_2 - 3x_3$$
.

Hence

$$x = (x_1, x_2, x_3) = x_2(-2, 1, 0) + x_3(-3, 0, 1).$$

Therefore

$$\mathsf{Null}(A) = \mathsf{Span}_{\mathbb{O}}\{(-2,1,0), (-3,0,1)\}.$$

MANCHESIER Image of the Same Matrix (continued)

$$\operatorname{Im}(A) = \operatorname{Span}_{\mathbb{Q}} \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ -4 \end{bmatrix}, \begin{bmatrix} 3 \\ -8 \end{bmatrix} \right\}.$$

Notice that

$$\begin{bmatrix} 2 \\ -4 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \qquad \begin{bmatrix} 3 \\ -8 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 0 \\ -2 \end{bmatrix},$$

so only one of these is independent. Therefore.

$$\operatorname{Im}(A) = \operatorname{Span}_{\mathbb{Q}} \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\}.$$

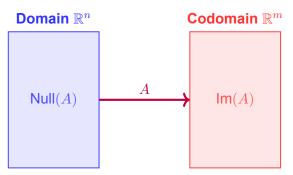
Hence

$$\dim_{\mathbb{Q}}(\operatorname{Im}(A))=1,\quad \dim_{\mathbb{Q}}(\operatorname{Null}(A))=2.$$

Observation (Rank–Nullity analogue):

 $\dim_{\mathbb{Q}}(\operatorname{Im}(A)) + \dim_{\mathbb{Q}}(\operatorname{Null}(A)) = 3 = \text{number of columns}.$

MANCHESIER Submodules as Linear Substructures



Interpretation:

- Null(A) lives in the domain R^n (vectors mapped to zero)
- Im(A) lives in the codomain \mathbb{R}^m (all possible outputs)
- Each is a submodule closed under addition and scalar multiplication.

MANCHESTER Remarks and Extensions

- Every vector space is a module, but not every module is a vector space (lack of division in R).
- Submodules play the same role as subspaces.
- The null and image submodules generalize the kernel and image of a linear map.
- Free modules generalize coordinate spaces \mathbb{R}^n .
- If R is a principal ideal domain, many results from linear algebra (rank, basis, independence) extend naturally.

Important note: Modules over non-fields can have surprising behaviors — e.g., not every submodule has a complement, not every module has a basis.

MANCHESTER Summary of Lecture 4 The University of Manchester

- Defined an R-module as an abelian group with a compatible scalar multiplication.
- Showed that for a CRWU, R^n , $M_{m \times n}(R)$, and R[x] are R-modules.
- Introduced linear independence, span, and basis in modules.
- Proved characterization: S is a basis \iff each v has a unique expression.
- Defined submodules and proved closure criterion $\lambda v + \mu w \in W$.
- Proved that Null(A) and Im(A) are submodules.
- Worked out complete example for $A \in M_{2\times 3}(\mathbb{Q})$, computing both Null(A) and Im(A).

MANCHESTER Thanks The University of Manchester

