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Module over a Commutative Ring with

Unity (CRWU)

Definition.

Let R be a commutative ring with unity (CRWU), and let

(V,+,−, 0) be an abelian (commutative) group under addition. A
scalar multiplication ∗ : R× V → V makes V an R–module if the

following hold for all λ, µ ∈ R and v, w ∈ V :

(λµ) ∗ v = λ ∗ (µ ∗ v) (Associativity of scalar mult.)

(λ+ µ) ∗ v = λ ∗ v + µ ∗ v (Distributivity over ring addition)

λ ∗ (v + w) = λ ∗ v + λ ∗ w (Distributivity over module addition)

1R ∗ v = v (Unital condition)

Notation: (V,+, ∗, 0) is called an R–module. If R is a field, V is a

vector space over R.
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Interpretation and Diagram

Idea

Modules generalize vector spaces—where scalars come not from

a field, but from a ring.

R V

R× V

V

∗

(λ, v) 7→ λ ∗ v
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Examples of R–Modules

Let R be a CRWU, m,n ∈ N.
1. Coordinate Module:

Rn = {(a1, . . . , an) | ai ∈ R}.

Addition and scalar multiplication defined by

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn),

λ ∗ (a1, . . . , an) = (λa1, . . . , λan).

Then (Rn,+, ∗) is an R–module. When R is a field, this is a vec-

tor space.

2. Matrix Module:

Mm×n(R) = {[aij ]m×n | aij ∈ R},

with addition (A + B)ij = aij + bij , and scalar multiplication
(λA)ij = λaij . 4



Examples (continued)

3. Zero Module: {0} with r ∗ 0 = 0 for all r ∈ R.
4. Free Module: Let S = {e1, . . . , en} be a finite set. Define

FreeR(S) =

{
n∑

i=1

λiei | λi ∈ R

}
.

Addition and scalar multiplication:

(λ1e1 + · · ·+ λnen) + (µ1e1 + · · ·+ µnen) = (λ1 + µ1)e1 + · · ·+ (λn + µn)en,

r(λ1e1 + · · ·+ λnen) = (rλ1)e1 + · · ·+ (rλn)en.

Then FreeR(S) is an R–module.

5



Free Module on Infinite Basis

If S is infinite, FreeR(S) consists of finite linear combinations:

λ1ei1 + · · ·+ λkeik , λi ∈ R.

Example: S = {1, x, x2, x3, . . . } then

FreeR(S) = R[x],

the ring of polynomials over R—a free R–module with basis

{1, x, x2, . . . }

.
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Linear Independence and Span

Definition: Let V be an R–module, e1, . . . , en ∈ V .

1. Linear Independence: {e1, . . . , en} is linearly independent if

λ1e1 + · · ·+ λnen = 0 ⇒ λ1 = · · · = λn = 0.

2. Linear Dependence: The set is linearly dependent if there

exist coefficients, not all zero, satisfying

λ1e1 + · · ·+ λnen = 0.

3. Span:

SpanR{e1, . . . , en} =

{
n∑

i=1

λiei | λi ∈ R

}
.

4. Basis: A set {e1, . . . , en} is a basis of V if it is linearly
independent and spans V .
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Linear independence over Z and Q

Example

Let R be Q or Z, V = R2, v1 = (2, 0), v2 = (3, 0). Then the vectors
v1 and v2 are linearly dependent since 3v1 − 2v2 = 0. When

R = Q, we can find reciprocals, and so v2 = (3/2)v1. However,
when R = Z, we cannot express one of the vectors as a multiple
of the other.

Remark

If R is a field and µ1v1 + · · ·+ µnvn = 0 with µi 6= 0, then we can
divide:

vi =
∑
j 6=i

−µj

µi
vj .

However, for general modules (where R is not a field), division

may not be possible, so such reduction cannot be performed.
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Standard Basis of Rn

Example:

For Rn define

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

Claim: {e1, . . . , en} is a basis of Rn.

Proof:

• Every v = (a1, . . . , an) ∈ Rn can be written uniquely as

v = a1e1 + · · ·+ anen.

• If
∑

λiei = 0, then all λi = 0. Hence independence.

Therefore {ei} is a basis.
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Matrix Unit Basis of Mm×n(R)

Example:

For each (i, j) define Eij ∈ Mm×n(R) by

(Eij)kl =

{
1, k = i, l = j,

0, otherwise.

Then {Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis of Mm×n(R).

Example (for m = n = 2):

E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]
.

Any A =

[
a b
c d

]
can be written as

A = aE11 + bE12 + cE21 + dE22.
10



Other Basis Examples

Zero Module:

φ is a basis of {0}.

Free Module:

If S is a set, S itself forms a basis of FreeR(S).

Polynomial Module:

For S = {1, x, x2, . . . },

R[x] = FreeR(S)

with basis {1, x, x2, . . . }.
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Uniqueness of Representation

Proposition.

Let R be a CRWU, V an R–module, and S = {e1, . . . , en} ⊆ V .
Then S is a basis of V if and only if every v ∈ V can be

expressed uniquely as

v = λ1e1 + · · ·+ λnen, λi ∈ R.

Proof. (⇒) If S is a basis, then by definition it spans V , so such
λi exist. Suppose v =

∑
λiei =

∑
µiei. Then

∑
(λi − µi)ei = 0.

Linear independence implies λi − µi = 0 for all i. Hence unique-
ness.

(⇐) If every v has a unique representation, then:
- Existence implies S spans V .
- Uniqueness implies S is linearly independent.

Thus S is a basis. � 12



Submodule

Definition.

Let R be a CRWU, V an R–module. A subset W ⊆ V is called a

submodule of V if:

1. (W,+) is a subgroup of (V,+),

2. ∀r ∈ R, w ∈ W : r ∗ w ∈ W.

Equivalently, W is a submodule iff

∀λ, µ ∈ R, v, w ∈ W, λv + µw ∈ W.
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Null Space and Image as Submodules

Let A ∈ Mm×n(R).
1. Null Space:

Null(A) = {x ∈ Rn | Ax = 0Rm}.

Proof: If x, y ∈ Null(A) and λ, µ ∈ R,

A(λx+ µy) = λAx+ µAy = 0.

Hence closed under addition and scalar multiplication → submod-

ule of Rn.

2. Image:

Im(A) = {Ax | x ∈ Rn} ⊆ Rm.

If y1 = Ax1, y2 = Ax2, then for any λ, µ ∈ R,

λy1 + µy2 = A(λx1 + µx2) ∈ Im(A).

Hence Im(A) is a submodule of Rm. � 14



Example with Numerical Matrix

Let

A =

[
1 2 3
−2 −4 −8

]
∈ M2×3(Q).

Find Null(A):

Ax = 0 ⇒

{
x1 + 2x2 + 3x3 = 0,

−2x1 − 4x2 − 8x3 = 0.

Second equation is −2× first, redundant. Solve first:

x1 = −2x2 − 3x3.

Hence

x = (x1, x2, x3) = x2(−2, 1, 0) + x3(−3, 0, 1).

Therefore

Null(A) = SpanQ{(−2, 1, 0), (−3, 0, 1)}.
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Image of the Same Matrix (continued)

Im(A) = SpanQ

{[
1
−2

]
,

[
2
−4

]
,

[
3
−8

]}
.

Notice that[
2
−4

]
= 2

[
1
−2

]
,

[
3
−8

]
= 3

[
1
−2

]
+

[
0
−2

]
,

so only one of these is independent. Therefore,

Im(A) = SpanQ

{[
1
−2

]}
.

Hence

dimQ(Im(A)) = 1, dimQ(Null(A)) = 2.

Observation (Rank–Nullity analogue):

dimQ(Im(A)) + dimQ(Null(A)) = 3 = number of columns.
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Submodules as Linear Substructures

Domain Rn

Null(A)

Codomain Rm

Im(A)
A

Interpretation:

• Null(A) lives in the domain Rn (vectors mapped to zero)

• Im(A) lives in the codomain Rm (all possible outputs)

• Each is a submodule closed under addition and scalar

multiplication
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Remarks and Extensions

• Every vector space is a module, but not every module is a

vector space (lack of division in R).

• Submodules play the same role as subspaces.

• The null and image submodules generalize the kernel and

image of a linear map.

• Free modules generalize coordinate spaces Rn.

• If R is a principal ideal domain, many results from linear

algebra (rank, basis, independence) extend naturally.

Important note: Modules over non-fields can have surprising

behaviors — e.g., not every submodule has a complement, not

every module has a basis.
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Summary of Lecture 4

• Defined an R–module as an abelian group with a compatible
scalar multiplication.

• Showed that for a CRWU, Rn, Mm×n(R), and R[x] are
R–modules.

• Introduced linear independence, span, and basis in

modules.

• Proved characterization: S is a basis ⇐⇒ each v has a
unique expression.

• Defined submodules and proved closure criterion

λv + µw ∈ W .

• Proved that Null(A) and Im(A) are submodules.

• Worked out complete example for A ∈ M2×3(Q), computing
both Null(A) and Im(A).
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Thanks
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