

Combinatorial Mesh Calculus (CMC): Lecture 5

Lectured by: Dr. Kiprian Berbatov¹
Lecture Notes Compiled by: Muhammad Azeem¹
Under the supervision of: Prof. Andrey P. Jivkov¹

 1 Department of Mechanical and Aerospace Engineering, The University of Manchester, Oxford Road,

Manchester M13 9PL, UK

MANCHESTER Dimension The University of Manchester

Let R be a commutative ring with unity (CRWU), and let V be an R-module.

Definitions

- V is free if it has a basis, i.e. a subset E ⊆ V such that every
 v ∈ V can be written uniquely as a finite R-linear
 combination of elements of E.
- *V* is **finite-dimensional** if it has a finite basis.
- If $E = \{e_1, \dots, e_n\}$ is a basis of V, we write $\dim_E V = n$.

Remarks: Free modules generalize vector spaces when the underlying field is replaced by a ring. The existence of a basis ensures that every element can be expressed uniquely in terms of simple building blocks.

MANCHESTER Well-defined dimension for free modules

Theorem

Let R be a CRWU and V a finite-dimensional R-module. If E and F are bases of V, then

$$\dim_E V = \dim_F V$$
.

We therefore denote the unique value by $\dim V$ and call it the rank of V.

Proof It suffices to show: if $R^m \cong R^n$ as R-modules, then m = n. Indeed, a finite-dimensional module V with a basis of size m is isomorphic to R^m , so any two bases yield $R^m \cong R^n$.

Let m be a maximal ideal of R; then k := R/m is a field. Tensoring the isomorphism $R^m \cong R^n$ with k over R gives

$$k \otimes_R R^m \cong k \otimes_R R^n$$
.

Since $k \otimes_R R \cong k$ and tensor commutes with finite direct sums,

$$k \otimes_R R^m \cong k^m, \qquad k \otimes_R R^n \cong k^n$$

as k-vector spaces. Hence $k^m \cong k^n$ as vector spaces, so m=n. Therefore, any two bases of a finite-dimensional R-module have the same cardinality.

Interpretation: If a module has two different bases, they must contain the same number of elements. This number - the dimension or *rank*-measures the intrinsic "size" of the module, just as dimension does for vector spaces.

MANCHESIER Examples of Dimension

Let R be a CRWU, $m, n \in \mathbb{N}$.

1 dim $R^n = n$, because each element (a_1, \ldots, a_n) can be written uniquely as

$$(a_1, \dots, a_n) = a_1 e_1 + a_2 e_2 + \dots + a_n e_n,$$

where $e_i = (0, \dots, \underbrace{1}, \dots, 0)$ are linearly independent and

span \mathbb{R}^n .

2 dim $M_{m \times n}(R) = mn$, because every matrix $A = (a_{ij})$ can be expressed uniquely as $A = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij}$, where E_{ij} has 1 in position (i, j) and 0 elsewhere. These mn matrices are linearly independent and span $M_{m \times n}(R)$.

MANCHESTER Examples of Dimension

Let R be a CRWU, $m, n \in \mathbb{N}$.

- 3 dim $\mathbf{0} = 0$, because the zero module $\{0\}$ contains only the zero element. The empty set \varnothing is vacuously linearly independent and spans $\{0\}$, so it serves as a basis.
- 4 dim $R[x] = \infty$, because the set $\{1, x, x^2, x^3, \dots\}$ is linearly independent and spans all polynomials. Every polynomial $f(x) = a_0 + a_1x + \cdots + a_nx^n$ is a finite *R*-linear combination of these monomials.

MANCHESTER Span and Equivalent Descriptions

Definition:

Let R be a CRWU, V an R-module, and $v_1, \ldots, v_m \in V$.

$$\operatorname{span}\{v_1, \dots, v_m\} := \left\{ \sum_{i=1}^m \lambda_i v_i \mid \lambda_1, \dots, \lambda_m \in R \right\}$$
$$= \left\{ w \in V \mid \exists \lambda_1, \dots, \lambda_m \in R, \ w = \sum_{i=1}^m \lambda_i v_i \right\}.$$

Remark 1 (Matrix image equals span of columns)

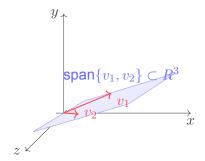
If $A \in M_{m \times n}(R)$ has column vectors $c_1, \ldots, c_n \in R^m$, then

$$\operatorname{Im}(A) = \{Av \mid v \in R^n\} = \operatorname{span}\{c_1, \dots, c_n\} \subseteq R^m.$$

Remark 2 (Span is a submodule)

 $span\{v_1,\ldots,v_m\}$ is a submodule of V.

Diagrammatic View: A Span as a Submodule (Plane in \mathbb{R}^3)



MANCHESTER Proof of the Remark

Proof of Remark 1.

Write $v = (\lambda_1, \dots, \lambda_n)^{\top} \in \mathbb{R}^n$. Then

$$Av = \lambda_1 c_1 + \dots + \lambda_n c_n \in \operatorname{span}\{c_1, \dots, c_n\}.$$

Thus $Im(A) \subseteq span\{c_i\}$. Conversely, any linear combination $\sum \lambda_i c_i$ equals $A(\lambda_1, \dots, \lambda_n)^{\mathsf{T}}$, hence belongs to $\mathsf{Im}(A)$. Therefore, equality holds.

MANCHESTER Proof of the Remark

Proof of Remark 2.

Let $W := \text{span}\{v_1, \dots, v_m\}$. If $w = \sum \lambda_i v_i$ and $w' = \sum \mu_i v_i$, then for any $a, b \in R$,

$$aw + bw' = \sum (a\lambda_i + b\mu_i)v_i \in W,$$

so W is closed under linear combinations, hence under addition and R-scalar multiplication; thus W is a submodule of V.

Polynomial Module

Let $S = \{1, x, x^2\} \subset \mathbb{Q}[x]$. Then

$$\mathsf{span}_{\mathbb{Q}}(S) = \{ a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{Q} \},\$$

which is the Q-vector space (or Q-module) of all quadratic polynomials.

Reasoning.

- Every quadratic polynomial $p(x) = a_0 + a_1x + a_2x^2$ can be uniquely written as a linear combination of $1, x, x^2$.
- The set $\{1, x, x^2\}$ is linearly independent, since $c_0 \cdot 1 + c_1 x + c_2 x^2 = 0 \Rightarrow c_0 = c_1 = c_2 = 0.$
- Therefore, $\{1, x, x^2\}$ forms a **basis** of span_{\mathbb{O}}(S).

Interpretation. Geometrically, the span operation constructs the smallest subspace (submodule) of $\mathbb{Q}[x]$ that contains S.

MANCHESTER Definition and Notation

Let R be a CRWU, V, W be R-modules, and $f: V \to W$ a function.

Definition (Linear map / R-module homomorphism)

f is **linear** if for all $v_1, v_2 \in V$ and $\lambda \in R$,

$$f(v_1 + v_2) = f(v_1) + f(v_2),$$

$$f(\lambda v) = \lambda f(v).$$

Notation

The set of all R-linear maps $V \to W$ is denoted

$$\operatorname{\mathsf{Hom}}_R(V,W)$$
 or $\operatorname{\mathsf{Hom}}(V,W)$ or $\mathcal{L}(V,W)$.

MANCHESIER Examples of Linear Maps

Let R be a CRWU, V, W be R-modules.

- 1. **Zero map** $0: V \to W$, 0(v) = 0 is linear (both axioms hold trivially).
- 2. **Identity** $id_V : V \rightarrow V$ is linear.
- 3. Matrix map if $V = \mathbb{R}^n$, $W = \mathbb{R}^m$ and $A \in M_{m \times n}(\mathbb{R})$, define $\mathcal{A}(v) = Av$. Then

$$\mathcal{A}(v+w) = A(v+w) = Av + Aw, \qquad \mathcal{A}(\lambda v) = A(\lambda v) = \lambda(Av),$$

so \mathcal{A} is linear.

4. Integration on $C^0[0,1]$: Let $V=W=C^0[0,1]$ over $R=\mathbb{R}$ and

$$(If)(x) = \int_0^x f(t) dt.$$

Then *I* is linear by linearity of the integral:

$$I(f+g) = If + Ig, \qquad I(\lambda f) = \lambda(If).$$

MANCHESIER Kernel - Image; Submodule Properties

Definitions

Let $f \in \text{Hom}_R(V, W)$.

$$\begin{aligned} & \ker f := \! \{ \, v \in V \mid f(v) = 0_W \, \}, \\ & \operatorname{Im} f := \! \{ \, f(v) \mid v \in V \, \} = \{ \, w \in W \mid \exists v \in V, \ w = f(v) \, \}. \end{aligned}$$

Proposition

Let $f \in Hom_R(V, W)$. Then ker f is a submodule of V, and Im f is a submodule of W.

MANCHESIER Kernel - Image; Submodule Properties

Proof

If $u, v \in \ker f$ and $\lambda, \mu \in R$, then

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v) = 0,$$

so $\lambda u + \mu v \in \ker f$. Thus $\ker f < V$.

If $y_1 = f(v_1), y_2 = f(v_2)$ and $\lambda, \mu \in R$, then

$$\lambda y_1 + \mu y_2 = \lambda f(v_1) + \mu f(v_2) = f(\lambda v_1 + \mu v_2) \in \text{Im } f.$$

Hence Im $f \leq W$.

MANCHESTER Example

Let $R=\mathbb{R}$ and

$$V = W = \{ a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R} \},\$$

define $D: V \to V$ by Df = f'.

Computations

$$D(2+4x+x^2) = 4+2x.$$

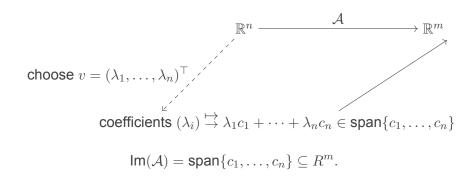
 $\ker D = \{ a_0 \mid a_0 \in \mathbb{R} \}$ (constant polynomials),

 $\operatorname{Im} D = \{ a_0 + a_1 x \mid a_0, a_1 \in \mathbb{R} \} \quad (\text{linear polynomials}).$

Justification.

Df=0 iff f is constant, hence $\ker D$ are the constants. If $f=a_0+a_1x+a_2x^2$, then $Df=a_1+2a_2x$ is any linear polynomial: given $\alpha+\beta x$ choose $a_1=\alpha$, $a_2=\beta/2$. Thus the image equals the set of linear polynomials.

MANCHESTER Matrix Image as Span of Columns



Proposition.

Let R be a CRWU, V, W be R-modules, and $f \in Hom_R(V, W)$. Then

f is injective \iff ker $f = \{0\}$.

Proof.

- (\Rightarrow) If f is injective and $v \in \ker f$, then f(v) = 0 = f(0), hence v = 0. So ker $f = \{0\}$.
- (\Leftarrow) Suppose ker $f = \{0\}$ and $f(v_1) = f(v_2)$. Then $f(v_1 v_2) = 0$, so $v_1 - v_2 \in \ker f$, hence $v_1 - v_2 = 0$, i.e. $v_1 = v_2$. Thus f is injective.

MANCHESIER Definition and Equivalent Characteriza-

Definition (Isomorphism).

Let R be a CRWU, V, W R-modules, and $f \in Hom_R(V, W)$. We say f is an isomorphism if there exists $q \in Hom_R(W, V)$ such that

$$g \circ f = \mathrm{id}_V, \qquad f \circ g = \mathrm{id}_W.$$

Equivalently

f is bijective. In this case V and W are isomorphic, written $V \cong W$

MANCHESIER Flattening Matrices is an Isomorphism

Let
$$R$$
 be a CRWU and $m,n\in\mathbb{N}$. Put $V=M_{m\times n}(R)$ and $W=R^{mn}$. Define
$$F:V\to W,\quad F\left(\begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{m1}&a_{m2}&\cdots&a_{mn}\end{bmatrix}\right)=\begin{pmatrix} a_{11}\\a_{12}\\\vdots\\a_{1n}\\a_{21}\\\vdots\\a_{2n}\\\vdots\\a_{mn}\end{pmatrix}$$

MANCHESTER Flattening Matrices is an Isomorphism

Claim:

F is a linear isomorphism.

Linearity:

$$F(A+B)=F(A)+F(B)$$
 and $F(\lambda A)=\lambda F(A)$ hold entrywise.

Injective:

$$F(A) = 0$$
 implies all $a_{ij} = 0$, hence $A = 0$.

Surjective:

Given $(b_1, \ldots, b_{mn})^{\top} \in \mathbb{R}^{mn}$, place entries row-by-row into a matrix B; then $F(B) = (b_1, \ldots, b_{mn})^{\top}$.

Therefore F is a linear bijection, i.e. an isomorphism $M_{m\times n}(R)\cong R^{mn}$.

MANCHESIER Universal Property of Free Modules

Proposition (Extension from a basis).

Let R be a CRWU. V a free R-module with basis $S = \{e_1, \dots, e_n\}$ (possibly infinite index set), W an R-module, and pick arbitrary $w_1, \ldots, w_n \in W$. Then there exists a unique linear map $f \in Hom_R(V, W)$ such that

$$f(e_i) = w_i, \quad i = 1, \dots, n.$$

Proof.

Every $v \in V$ can be written uniquely as $v = \sum_{i=1}^n \lambda_i e_i$ with $\lambda_i \in R$ (finite sum if S infinite). Define $f(v) := \sum_{i=1}^n \lambda_i w_i$. This is well-defined by uniqueness of the coefficients. For linearity: if $v = \sum \lambda_i e_i$ and $u = \sum \mu_i e_i$, then

$$f(v+u) = \sum (\lambda_i + \mu_i)w_i = \sum \lambda_i w_i + \sum \mu_i w_i = f(v) + f(u),$$

and $f(\alpha v) = \sum (\alpha \lambda_i) w_i = \alpha \sum \lambda_i w_i = \alpha f(v)$. By construction $f(e_i) = w_i$.

Uniqueness: if g is another linear map with $g(e_i)=w_i$, then for any $v=\sum \lambda_i e_i$, $g(v)=\sum \lambda_i g(e_i)=\sum \lambda_i w_i=f(v)$. Hence g=f.

$R^n \cong \mathsf{Free}_R(S)$

Let R be a CRWU, $n \in \mathbb{N}$, and $S = \{e_1, \dots, e_n\}$ a finite set. Define

$$f: \mathbb{R}^n \to \mathsf{Free}_R(S), \qquad f(1, 0, \dots, 0) = e_1, \dots, \ f(0, \dots, 0, 1) = e_n,$$

and extend R-linearly. Then for $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$,

$$f(\lambda_1, \dots, \lambda_n) = \lambda_1 e_1 + \dots + \lambda_n e_n.$$

By the previous proposition, f is linear and bijective (its inverse sends $\sum \lambda_i e_i$ to $(\lambda_1, \dots, \lambda_n)$). Hence $R^n \cong \operatorname{Free}_R(S)$.

MANCHESIER Coordinate Map with Respect to a Basis

Let R be a CRWU and V a finite-dimensional R-module with ordered basis $e = (e_1, \ldots, e_n)$.

Definition (Coordinates). For $v \in V$ written uniquely as v = $\lambda_1 e_1 + \cdots + \lambda_n e_n$, define

$$(\cdot)^e: V \to \mathbb{R}^n, \qquad v^e:=(\lambda_1, \dots, \lambda_n)^\top.$$

Proposition. $(\cdot)^e$ is a linear isomorphism.

Proof.

Linearity is immediate from linearity of coordinate extraction. Injectivity: $v^e = 0$ implies all coordinates = 0, hence v = 0. Surjectivity: given $(\mu_1, \dots, \mu_n)^{\top}$, take $v = \sum \mu_i e_i$, then $v^e = (\mu_1, \dots, \mu_n)^{\top}$.

Setup. Let $V = \{ a_0 + a_1x + a_2x^2 \mid a_0, a_1, a_2 \in R \}$ be the R-module (or vector space, if R is a field) of quadratic polynomials, and let $e = (1, x, x^2)$ be its ordered basis.

Coordinate Map

Every element $v \in V$ can be uniquely written as

$$v = a_0 \cdot 1 + a_1 \cdot x + a_2 \cdot x^2,$$

so its coordinate vector with respect to e is

$$v^e = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \in R^3.$$

Interpretation.

- The coordinate map $(\cdot)^e:V\to R^3$ translates each polynomial into its list of coefficients.
- It is a linear isomorphism addition and scalar multiplication of polynomials correspond exactly to those of their coordinate vectors:

$$(p+q)^e = p^e + q^e, \qquad (\lambda p)^e = \lambda p^e.$$

• Hence V is algebraically identical to \mathbb{R}^3 under this basis, just viewed in a different "language" — coefficients instead of components.

Visualization. Think of the polynomial $a_0 + a_1x + a_2x^2$ as a point in \mathbb{R}^3 whose coordinates are (a_0, a_1, a_2) — the space of all quadratic shapes parameterized by their coefficients.

MANCHESIER Hom is a Submodule of W^V

Definition

Let W^V denote all functions $V \to W$ with pointwise operations:

$$(f+g)(v) := f(v) + g(v),$$

$$(\lambda f)(v) := \lambda f(v).$$

Proposition.

 $\mathsf{Hom}_R(V,W) \subseteq W^V$ is a submodule (closed under + and R-scalars).

MANCHESTER Hom is a Submodule of W^V

Proof.

If $f,g \in \mathsf{Hom}_R(V,W)$ and $\lambda \in R$, for any $v,u \in V$:

$$(f+g)(v+u) = f(v+u) + g(v+u) = f(v) + f(u) + g(v) + g(u)$$

= $(f+g)(v) + (f+g)(u)$,

$$(f+g)(\alpha v) = f(\alpha v) + g(\alpha v) = \alpha f(v) + \alpha g(v) = \alpha (f+g)(v).$$

So f + q is linear.

Similarly $(\lambda f)(v+u) = \lambda f(v+u) = \lambda f(v) + \lambda f(u)$ and

 $(\lambda f)(\alpha v) = \lambda \alpha f(v) = \alpha(\lambda f)(v)$, hence λf is linear.

Therefore $Hom_R(V, W)$ is an R-submodule of W^V .

The University of Manches

h = 2D - 3 id on Quadratics

Let $R = \mathbb{R}$ and $V = \{a_0 + a_1x + a_2x^2\}$ with basis $e = (1, x, x^2)$. Put

$$f = D$$
, $g = id_V$, $h = 2f - 3g$.

Then for $p(x) = a_0 + a_1 x + a_2 x^2$,

$$h(p) = 2(a_1 + 2a_2x) - 3(a_0 + a_1x + a_2x^2)$$

= $(-3a_0 + 2a_1) + (-3a_1 + 4a_2)x + (-3a_2)x^2$.

In coordinates $p^e = (a_0, a_1, a_2)^{\top}$,

$$h^e(p) = \begin{pmatrix} -3a_0 + 2a_1 \\ -3a_1 + 4a_2 \\ -3a_2 \end{pmatrix}.$$

MANCHESTER Matrix of a Linear Map

Let V, W be finite-dimensional R-modules, with ordered bases

$$e = (e_1, \dots, e_n) \text{ for } V, \qquad f = (f_1, \dots, f_m) \text{ for } W.$$

For $A \in \text{Hom}_R(V, W)$, write for each $1 \leq j \leq n$:

$$\mathcal{A}(e_j) = a_{1j}f_1 + \dots + a_{mj}f_m.$$

Definition. The matrix of \mathcal{A} w.r.t. (e, f) is

$$(\mathcal{A})_{e}^{f} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \in M_{m \times n}(R).$$

Matrix of h = 2D - 3 id

With $e = f = (1, x, x^2)$ and the computations

$$h(1) = -3,$$
 $h(x) = 2 - 3x,$ $h(x^2) = 4x - 3x^2,$

their coordinate columns (w.r.t. e) are

$$[-3,0,0]^{\top}, \quad [2,-3,0]^{\top}, \quad [0,4,-3]^{\top}.$$

Hence

$$(h)_e^f = \begin{bmatrix} -3 & 2 & 0 \\ 0 & -3 & 4 \\ 0 & 0 & -3 \end{bmatrix}.$$

MANCHESIER Composition Corresponds to Matrix Prod-

uct

Let U, V, W be finite-dimensional R-modules with ordered bases

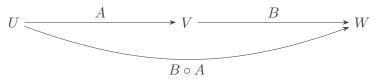
$$e = (e_1, \dots, e_p), \quad f = (f_1, \dots, f_m), \quad g = (g_1, \dots, g_n).$$

Let $A \in \operatorname{Hom}_R(U,V)$ and $B \in \operatorname{Hom}_R(V,W)$. Then $B \circ A \in$ $\mathsf{Hom}_R(U,W)$ and

$$(A)_e^f \in M_{m \times p}(R), \quad (B)_f^g \in M_{n \times m}(R), \quad (B \circ A)_e^g \in M_{n \times p}(R),$$

with the identity

$$(B \circ A)_e^g = (B)_f^g (A)_e^f.$$



Proof.

For each j, write $A(e_j) = \sum_{i=1}^m \alpha_{ij} f_i$ and $B(f_i) = \sum_{k=1}^n \beta_{ki} g_k$. Then

$$(B \circ A)(e_j) = B\left(\sum_i \alpha_{ij} f_i\right) = \sum_i \alpha_{ij} \left(\sum_k \beta_{ki} g_k\right)$$
$$= \sum_k \left(\sum_i \beta_{ki} \alpha_{ij}\right) g_k.$$

Thus the (k,j)-entry of $(B\circ A)_e^g$ is $\sum_i \beta_{ki}\alpha_{ij}$, i.e. the matrix product $(B)_f^g(A)_e^f$.

- Defined free and finite-dimensional R-modules; proved dimension is well-defined for finite-dimensional modules (IBN via reduction mod maximal ideals).
- Computed dimensions of R^n , $M_{m \times n}(R)$, **0**, and R[x].
- Defined span; proved image of a matrix equals the span of its columns; proved span is a submodule.
- Defined linear maps; verified linearity in key examples (zero, identity, matrix, integral).
- Defined kernel and image; proved they are submodules; computed them for D on quadratics.

