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Dimension

The University of Manchester

Let R be a commutative ring with unity (CRWU), and let V' be an
R—module.

e Vs free if it has a basis, i.e. a subset £ C V such that every
v € V can be written uniquely as a finite R—linear
combination of elements of E.

e V is finite—dimensional if it has a finite basis.
o If E={ey,...,e,} is abasis of V, we write dimgp V = n.

Remarks: Free modules generalize vector spaces when the un-
derlying field is replaced by a ring. The existence of a basis en-

sures that every element can be expressed uniquely in terms of
simple building blocks.



Well-defined dimension for free modules

The University of Manchester

Let R be a CRWU and V a finite-dimensional R—module. If £ and
F are bases of V, then

We therefore denote the unique value by dim V" and call it the
rank of V.

Proof It suffices to show: if R™ = R"™ as R—modules, then m = n.
Indeed, a finite-dimensional module V' with a basis of size m is
isomorphic to R™, so any two bases yield R = R™.

Let m be a maximal ideal of R; then k := R/m is a field. Tensor-
ing the isomorphism R™ = R™ with k over R gives

kop R™ = koprp R™.



Proof (Continue)

The University of Manchester

Since k ®r R = k and tensor commutes with finite direct sums,
k®r R™ = k™, k®r R" = k"

as k—vector spaces. Hence k" = k™ as vector spaces, so m = n.
Therefore, any two bases of a finite-dimensional R—module have
the same cardinality.

Interpretation: If a module has two different bases, they must
contain the same number of elements. This number - the dimen-
sion or rank-measures the intrinsic “size” of the module, just as
dimension does for vector spaces.



Examples of Dimension
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Let R be a CRWU, m,n € N.

1 dim R™ = n, because each element (a4, ..., a,) can be
written uniquely as

(a1,...,an) = are; + agzea + - - - + apen,

where ¢; = (0,...,_1 ,...,0) are linearly independent and
.
span R".
2 dim M, x»(R) = mn, because every matrix A = (a;;) can be
expressed uniquely as A = 71", 37, a;;Ey;, where E;; has
1 in position (7, j) and 0 elsewhere. These mn matrices are
linearly independent and span M,,,x,(R).



Examples of Dimension
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Let R be a CRWU, m,n € N.

3 dim0 = 0, because the zero module {0} contains only the
zero element. The empty set @ is vacuously linearly
independent and spans {0}, so it serves as a basis.

4 dim R[x] = oo, because the set {1, z,22,23,...} is linearly
independent and spans all polynomials. Every polynomial
f(z) =ap+ a1z + -+ ayz™ is a finite R-linear combination
of these monomials.



Span and Equivalent Descriptions
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Let R be a CRWU, V an R—module, and vy, ..., v, € V.

span{vy,..., v} = {Z s
o

m
={weV|3I\,....,. \m €R, w:Z)\ivi}.
f=il

Al,...,AmER}

Remark 1 (Matrix image equals span of columns)

If A€ M,,x,(R) has column vectors cy,...,c, € R™, then

Im(A) = {Av | v € R"} = span{ci,...,cn} € R™.
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Remark 2 (Span is a submodule)

span{vi, ..., vy} is a submodule of V.
Diagrammatic View: A Span as a Submodule (Plane in R?)

Y

span{v, zjz}/g%
v



Proof of the Remark
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Proof of Remark 1.

Write v = (\1,...,\,)" € R™. Then
Av = Ajc1 + -+ Aoy, € SpPan{cy, ..., cp}.
Thus Im(A) C span{c;}. Conversely, any linear combination

S Ajc;j equals A(Mq, ..., \,)", hence belongs to Im(A).
Therefore, equality holds. Ol



Proof of the Remark
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Proof of Remark 2.

Let W :=span{vy,...,vn}. Ifw=> A\v; and w’ = > p;v;, then
forany a,b € R,

aw + bw' = Z(a)\i + bui)v; € W,

so W is closed under linear combinations, hence under addition
and R—scalar multiplication; thus W is a submodule of V. O



Example of a Span
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Polynomial Module

Let S = {1,z,2%} C Q[z]. Then
spang(S) = { ag + a1z + agx? | ag,a1,as € Q },

which is the Q—vector space (or Q—module) of all quadratic
polynomials.
Reasoning.
e Every quadratic polynomial p(x) = ag + a2 + azx? can be
uniquely written as a linear combination of 1, z, 2.
e The set {1,z, 22} is linearly independent, since
Co-1+611‘+623§‘2:0:>60261 =cy = 0.
e Therefore, {1,z,2?} forms a basis of spany(5).
Interpretation. Geometrically, the span operation constructs the
smallest subspace (submodule) of Q[z] that contains S.



Definition and Notation
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Let R be a CRWU, V, W be R—modules, and f : V — W a func-
tion.

Definition (Linear map / R—module homomorphism)

f is linear if for all v1,v9 € V and A € R,

f(v1+v2) =f(v1) + f(va),
fOw) =Af(v).

The set of all R—linear maps V' — W is denoted

Homp(V, W) or Hom(V,W) orl(V,W).



Examples of Linear Maps
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Let R be a CRWU, V, W be R—modules.

1.

2.
3.

Zeromap 0: V — W, 0(v) = 0 is linear (both axioms hold
trivially).

Identity idy : V' — V is linear.

Matrix map If V = R", W = R™ and A € M,,«»(R), define
A(v) = Av. Then

A(v+w) = A(v+w) = Av+Aw, A(Mv) = A(Av) = A(Av),

so A is linear.

. Integration on C°[0,1]: Let V =W = C°[0,1] over R =R

and .
1)@ = [ s
Then I is linear by linearity of the integral:

I(f+9)=1f+1g,  I(\f)=A(S).



Mt Kernel - Image; Submodule Properties
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Let f € Homg(V, W).

ker f:={ve V| [f(v)=0w},
Imf:={f(v)|veV}={weW|eV, w= f(v)}.

Let f € Homg(V,W). Then ker f is a submodule of V', and Im f
is a submodule of TV/.



Kernel - Image; Submodule Properties

The University of Manchester

If u,v € ker fand A\, u € R, then

fu+ pv) = Af(u) + pf(v) =0,

SO A\u + uv € ker f. Thus ker f < V.
Ify1 = f(’l)l),yg = f(’l)g) and \, u € R, then

Ay1 + pye = Af(v1) + pf(v2) = f(Avr + pwe) € Im f.

Hence Im f < V.



RIS xarole

Let 1t = 1 and
V=W={a + a1z + asz? | ap,a1,a2 € R},

define D:V - VbyDf = f.
Computations
D(2+ 4z 4 %) = 4 + 2z.

kerD ={ag|ay € R} (constantpolynomials),

ImD = {ap+ a1z | ap,a; € R} (linear polynomials).

Justification.

Df = 0iff f is constant, hence ker D are the constants. If

f =ap+ a1z + agz?, then Df = a; + 2asx is any linear
polynomial: given « + Sz choose a; = «, ay = /2. Thus the
image equals the set of linear polynomials. O]



Matrix Image as Span of Columns
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R™ R™

choose v = (A1,..., )" 7"

’

z
s
)4

coefficients (\;) ¢ Arer + -+ A, € span{cy, ..., cn}

Im(A) = span{ci,...,c,} € R™.



Proposition: f injective <= ker f = {0}
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Proposition.

Let R be a CRWU, V, W be R—-modules, and f € Hompg(V, W).
Then

fis injective <= ker f = {0}.

Proof.

(=) If f isinjective and v € ker f, then f(v) = 0 = f(0), hence
v=0. Soker f ={0}.

(«<) Suppose ker f = {0} and f(v1) = f(v2). Then f(v1 —v2) =0,
S0 v; — v € ker f, hence v1 — vy =0, i.e. v1 = v9. Thus f is
injective. Ol



Definition and Equivalent Characteriza-
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Definition (Isomorphism).

Let R be a CRWU, V, W R—modules, and f € Hompg(V, W). We
say f is an isomorphism if there exists ¢ € Hompg (W, V') such that

gof=idy,  fog=idw.

Equivalently

f is bijective. In this case V and W are isomorphic, written
V=w.



Flattening Matrices is an Isomorphism
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Let Rbea CRWU and m,n € N. PutV = M,,«,(R)and W =
R™"_ Define

ail
ai2
A1n
ail a2 o Qip an
a1 a2 a2n . mn
F:vow, r|| 0 ™ 7 o s [ erm
: : . : U
aml Am2 - Gmn
Am1
Amn

20



Flattening Matrices is an Isomorphism
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F'is a linear isomorphism.

F(A+ B) F(A)+ F(B)and F(AA) = AF(A) hold entrywise.

F(A) = 0 implies all a;; =0, hence A = 0.

Given (by,..., bmn) € R™" place entries row-by-row into a
matrix B; then F(B) = (b1,...,bmn) .

Therefore F'is a linear bijection, i.e. an isomorphism

My xn(R) =2 R™,



Universal Property of Free Modules
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Proposition (Extension from a basis).

Let R be a CRWU, V a free R—module with basis

S ={e1,...,e,} (possibly infinite index set), W an R—module,
and pick arbitrary wy, ..., w, € W. Then there exists a unique
linear map f € Hompg(V, W) such that

f(ei)zwi, i=1,...,n.

22



Proof
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Proof

Every v € V can be written uniquely as v = > | Aje; with \; € R
(finite sum if S infinite). Define f(v) := > | \jw;. This is
well-defined by uniqueness of the coefficients. For linearity: if
v=> MNe;and u =" ue;, then

f(v—l—u):Z)\+uzwz—ZAwl+ZMzwz— +f( )7

and f(av) = > (aX)w; = a ) \w; = af(v). By construction
f(e,) = W;.

Uniqueness: if g is another linear map with g(e;) = w;, then for
any v = Aiei, g(v) = > Nig(ei) = Y Mw; = f(v). Hence

g=1. O

23
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n ~
R™ = Freegr(95)

Let Rbea CRWU, n € N,and S = {ey,...,e,} afinite set.
Define

f: R" — Freegr(S), f(1,0,...,0)=e€1, ..., f(0,...,0,1) = ey,
and extend R-linearly. Then for (A1,...,\,) € R",
f()\l, .. ,)\n) = \e1+ -+ Apen.

By the previous proposition, f is linear and bijective (its inverse
sends > \e; to (A1,...,\,)). Hence R™ = Freeg(95).

24



Coordinate Map with Respect to a Basis
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Let R be a CRWU and V a finite-dimensional R—module with or-
dered basis ¢ = (e, ..., ep).

Definition (Coordinates). For v € V written uniquely as v =
Aer + - -+ \pen, define

()°: V= R", ve = (A1ye e A)

Proposition. (-)¢ is a linear isomorphism.

Proof.

Linearity is immediate from linearity of coordinate extraction.
Injectivity: v© = 0 implies all coordinates = 0, hence v = 0.
Surjectivity: given (u1,...,un) ", take v = 3" u;e;, then
ve:(ﬂl7-'-aﬂn)T' [

25
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Setup. Let V = {ag + a1z + asz? | ag, a1,as € R} be the R—mod-
ule (or vector space, if R is a field) of quadratic polynomials, and
let e = (1, z,22) be its ordered basis.

Coordinate Map

Every element v € V' can be uniquely written as
v=ap-1l+a-x+ay- 22,
so its coordinate vector with respect to e is

ag
vo=|a | € R

az

26
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Interpretatlon.

e The coordinate map (-)¢ : V' — R3 translates each
polynomial into its list of coefficients.

e ltis a linear isomorphism — addition and scalar multiplication
of polynomials correspond exactly to those of their
coordinate vectors:

(p+q)° =p°+ ", (Ap)© = Ap°.

e Hence V is algebraically identical to R under this basis, just
viewed in a different “language” — coefficients instead of
components.

Visualization. Think of the polynomial ag + a1z + axz? as a point

in R? whose coordinates are (ag, a1, as) — the space of all
quadratic shapes parameterized by their coefficients.

27



ik e Hom is a Submodule of WV
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Let WY denote all functions VV — W with pointwise operations:

(f +9)(v) :=f(v) + g(v),
(Af)(v) :=Af (v).

Proposition.

Hompg(V, W) C WV is a submodule (closed under + and
R—scalars).

28



Hom is a Submodule of WV
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If f,g € Homg(V,W)and X\ € R, forany v,u € V:

(f+9)(v+u) =flv+u)+g(v+u)= f(v)+ f(u) +gv) + g(u)
=(f +9)(v) + (f + g)(u),

(f + 9)(aw) = faw) + g(av) = af (v) + ag(v) = a(f + g)(v).

So f + g is linear.

Similarly (Af)(v +u) = Af(v+u) = Af(v) + A\f(u) and

(M) (aw) = Aaf(v) = a(Af)(v), hence Af is linear.

Therefore Homg(V, W) is an R—submodule of WV O

29



Example in R
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h = 2D — 3id on Quadratics
Let R=Rand V = {ag+ a1z + azz?} with basis e = (1, z,2?). Put

Then for p(z) = ag + a1x + az2?,

h(p) =2(a1 + 2a9z) — 3(ap + a1z + azz?)
=(—3ag +2a1) + (—3a1 +4a)z + (—3az)z>.

In coordinates p® = (ag, a1, a2)",

—3ag + 2a;
hé(p) = | —3a1 + 4as
—3a2

30



Matrix of a Linear Map
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Let V, W be finite-dimensional R—modules, with ordered bases
e=(e1,...,ey) forV, f=(fi,..., fm) for W.
For A € Homp(V, W), write for each 1 < j < n:
Alej) = aijfi+ -+ amjfm.
Definition. The matrix of A w.r.t. (e, f) is

ayip a2 - Qlp
a21 a2 - Q2p
Wi=|". . . | €Muxa(R)

aml Om2 °°° Qmn

31
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Matrix of h = 2D — 3id

With e = f = (1, 2, 2?) and the computations
h(1) = -3, h(z) =2—3z,  h(z?) = 4z — 322,
their coordinate columns (w.r.t. e) are
[-3,0,0]T, [2,-3,0]", [0,4,-3] .

Hence

32



Composition Corresponds to Matrix Prod-
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uct
Let U, V, W be finite-dimensional R—modules with ordered bases

e=(e1,...,ep), f=( 1.y fm), 9=(91,---,9n)

Let A € Homg(U,V)and B € Homg(V,W). Then Bo A €
Hompg (U, W) and

(A)] € Minxp(R), (B)§ € Muxm(R), (B oA € Maxy(R),

with the identity
(Bo A)? = (B)} (A).

33



Proof
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For each j, write A(e;) = > 1", oy fi and B(fi) = > 1_; Brigk-

Then
(B o A)e B(Zaijfi> :Zaij<;5kigk)
= Xk: ( Z 5kiaij>9k
Thus the (k, j)-entry of (B o A)Y is 3, fuivj, i.e. the matrix

k
product (B)?(A)if. O
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IR Summary
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Defined free and finite—dimensional R—modules; proved
dimension is well-defined for finite-dimensional modules
(IBN via reduction mod maximal ideals).

Computed dimensions of R", M,,«,(R), 0, and R[z].

Defined span; proved image of a matrix equals the span of
its columns; proved span is a submodule.

Defined linear maps; verified linearity in key examples (zero,
identity, matrix, integral).

Defined kernel and image; proved they are submodules;
computed them for D on quadratics.
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	Coordinate Isomorphism

