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Proposition
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dimHomg(V, W) = (dim V')(dim W)

Let R be a commutative ring with unity (CRWU). Let V, W be
finite-dimensional R—modules with

dimV =n, dimW =m.

dimHompg(V, W) = mn.

Choose ordered bases e = (ey,...,e,) Of Vand f = (f1,..., fm)
of W. For each A € Hompg(V, W) write
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This identifies A <— (a;;) € Mpmxn(R). The correspondence
¢ : Homg(V, W) >~ Mpxn(R), A (as))

is an R—module isomorphism (linearity is entrywise; bijectivity
follows by defining a map from any matrix to the unique A with
those columns). Hence

Homg(V,W) = R™ = dimHomg(V,W) = mn. O



e Dual Module
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Fora CRWU R and an R—module V, the dual module is

V*:=Homg(V,R)[={f:V — R|f is linear}].

(R?)* ={f : R> - Rlinear}
={ f(z1,22) = Miz1 + Xoza | A, A2 € R}



Finite-dimensional Case
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Remark: Dimension and Basis Dependence

Let R be a commutative ring with unity (CRWU), and let V' be a
finite—dimensional (free) R—module. Then

dim(V*) = dim (Homg(V, R)) = dim(V).

Indeed, each R—linearmap f : V — R is determined uniquely by
its values on a basis of V. If V' has basis {e,...,e,}, the dual
module V* has the dual basis {¢', ..., e"} where ¢'(¢;) = &;
hence both spaces have the same number of basis elements.

Summary. Although dimV = dim V* and we can identify them
under a fixed basis, such identification is artificial - only the dou-
ble dual V** can be identified with V' canonically.



Finite-dimensional Case
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Interpretation.

e There exists an isomorphism V = V*, but it is not canonical.
it depends on the chosen basis. Different choices of basis
lead to different identifications between V' and its dual.

e Consequently, in general algebraic treatments (over rings
that are not fields), we always distinguish V' from V*.
¢ In the language of physics and differential geometry:

— Elements of V' are contravariant vectors — typically
represented as column vectors.

— Elements of V* are covariant vectors — typically represented
as row vectors or linear functionals acting on V.

e Thus, V and V* play dual but complementary roles: one
represents directions, the other represents measurements
(functionals) on those directions.
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Kronecker Delta

Let V' be finite-dimensional with ordered basis e = (ey, . .., €,).
The dual basis e* = (e!,. .., e") is the family of linear forms
¢’ : V — R defined by

e'(e;) = 6; (1<i,j <n),

where the Kronecker delta is
. 1. 4=+
R
0, ©#7.

Example (standard R?). With e; = (1,0), e = (0,1), the dual
basis is given by projections

el(xy,x0) =21,  €*(z1,72) = 22



Reconstruction via Dual Basis

Let V' be finite-dimensional, e = (eq, ..., e,) a basis and

e* = (e!,...,e") its dual. Then for every v € V,
v = Z e'(v) e;.
=1

Proof.
Write v = "7, Aje;. Apply e':

ei(v) == Z)\jei(ej) = Z )\]5; = )\7;.
j=1 J=1

Hence ), et(v)e; = > Aiei = . O



sk el Standard & Nonstandard Basis in R?
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Example (standard R?).

For v = (v1,v2) and e = (e, e2) standard,

v =el(v)ey + e2(v)eg = v1(1,0) 4 v2(0,1) = (vy,va).

Example (nonstandard RR?).
Lete; = (1,2), e2 = (4,1). Seek e!, e? € (R?)* such that

et(er) =1, el(er) =0, eX(e1) =0, €%(ex) = 1.
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Solve for e¢!'. Write e! (21, 22) = A\1x1 + Aaz2. Then
AL 42X\ =1, AN+ X2 = 0.
From the second, Ay = —4)\;. Substitute in the first:
)\1—8)\1:1:>—7)\1:1=>/\1:—%, A2

Thus e!(z1,22) = —%xl + %332.
Solve for ¢2. Let e?(x1,22) = 121 + powa. Then

p1 + 2p2 =0, dpn + p2 =1

4
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From the first, u1 = —2uo. Substitute:

1 2
Buptpp=1=-Twp=1=up=—7, m=r.

Thus e?(z1, 22) = %xl = %xg.
Check. One verifies ¢’(¢;) = ¢/ and the reconstruction

v=ce'(v)e; +e*(v) ey forallve R
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Matrix View
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Dual Rows are the Inverse Matrix

Let F be the 2 x 2 matrix with columns eq, es:

E:B ﬂ, detE=1-1-4-2=-7#0.

E_1_1[1 —4]_[—% ‘—;]
- = - 2 1"
7|2 1 2 1

Observation. The rows of E~! are exactly the coefficient vectors
of el and e

Then

NS

1 L1 2 L1
Mo = [ f[] o= -]
Thus (e!, e?) corresponds to £~! and (-)-coordinates satisfy v¢ =

B 1 ’UStd )
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Dual Map

Let V, W be R—modules and ¢ € Hompg(V,W). The dual map
¢*WH — V7, ¢*(9) =909

is R—linear. In evaluation form, forg € W*and v € V,
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Let R be a CRWU, V, W finite-dimensional R—modules with or-
dered bases
e=(e1,...,ey) 0f V, f=01,..., fm)of W,

and dual bases e* = (e!,...,e"), f* = (f1,...,f™). For¢ €
Homp(V, W) and each j,

dlej) =Y fi(dle;)) fi
=1

Hence the matrix of ¢ w.r.t. (e, f) is
1<i<m

(gb)g - {fz(gb(e])) 1<j<n € men(R)

By definition of the dual basis, any w € W decomposes as
w=>_, f'(w)fi. Apply this to w = ¢(e;). .,
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Matrix of ¢* is the Transpose of (¢)f

Let V, W be finite-dimensional, e = (e1,...,¢en), f = (f1,-- -, fm)
with dual bases e* = (e!,...,e"), f* = (f',..., f™). For
¢ € Homp(V, W),

@5 = (@) -

Proof

Write ¢(e;) = 2™, aij fi; thus (¢)! = (ai;). We compute the
coordinates of ¢*(f%) € V* in the basis e*:

P (f1)=fopeV,
so for each j, e/ (¢*(f7)) = (¢*(f%)) (ej) = f*(¢(e;)). But

fi(¢(e;)) = aij by the very definition of the coefficients a;;.
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|
Hence the j-th coordinate of ¢*(f%) w.r.t. e* equals a;;.
Therefore, the matrix with columns [¢*(f1)] ... .., [¢*(f™)],. is
(a;;) with indices swapped, i.e.

Vv ’ w
5 (@)
Ol |
VK* 777777777777777 > R™
(O



Dual Reverses Composition

Proposition. Let U, V, W be R—modules, ¢ € Homy(U,V), ¢ €
Hompg(V,W). Then

(o) =¢ oy : W* — U,
Forge W*andu € U,

(¢ 0 9)7g) (u) =g (¢ 0 §)(u)) = g (P(¢(u)) = (¥79) ($(w))
=(¢"(¥"9))(w).

Since both sides define the same functional on every u, we have
equality of maps W* — U*. Ol



Dual Reverses Composition
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1. The sequence of maps on the vector spaces runs in the
forward direction:
vSviw

2. The sequence of the dual maps runs in the reverse direction:

w* &y E

The dual map ¢* is defined by (¢* f)(u) = f(é(u)), where f € V*
and u € U. The composition rule for duals also reverses the

order: (¢ o ¢)* = ¢p* o *.



Canonical Evaluation Map ¢ : V — V**

The University of Manchester

Definition. For any R—module V, define the evaluation (canoni-
cal) map

LV — V¥ =Hompg(V*, R), tw)(f) = fv) (feV").

L

1% -V
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Finite-dimensional Case

If V' is finite-dimensional, then ¢ is an isomorphism; we write
V' ~ V** canonically.

Proof.

Fix a basis e = (ey, ..., e,) With dual e* = (e!, ... e"). Then (e;)
is the functional on V* sending f to f(e;). In the dual basis, «(e;)
corresponds to the coordinate row

(e*(ej), ... e"(ej)) = (0,...,1,...,0), hence ¢ sends a basis to a
basis and is therefore an isomorphism. Basis-independence: if
we change basis by an invertible matrix F, the dual basis
changes by E~'7, and the resulting matrix of . remains the
identity; thus ¢ is canonical. O

20



Naturality with Respect to Double Dual

A
Let V, W be finite-dimensional, and ¢ € Homg(V,W). The double
dual map ¢** : V** — W** is defined by

¢ (A) :== Ao o7, (A e V™).

Then the square commutes: é

V - W
Ly LW
\4 \4
V** > W**

d)**

21
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Forv e Vand g € W*,

(@™ o) (v)(9) =tv (v)(¢79) = (¢79)(v) = g(6(v))
=uw (6(v))(9)
= (1w © 9) (v)(9)-

Thus ¢** o 1y = 1y 0 ¢. O

22



Bilinear Maps and Currying
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Let U, V,W be R—modules. Amap & : U x V — W is bilinear if
O (uy + uz,v) = ®(ug,v) + P(uz,v), P(Au,v) = AP(u,v),

O(u,v1 +v2) = P(u,v1) + P(u,v2), D(u, \v) = AP(u,v).

Equivalently, the curried map d:U — Hompg(V, W),
& (u)(v) = ®(u,v), is R-linear:

® e L(U,V;W) < & e Hompg (U,Homg(V,W)).

23



LN Fxamples
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e Dot product (over a CRWU contained in R):
(z,y) = > 2y R" x R" — Ris bilinear.

e Evaluation: eval : V x V* — R, eval(v, f) = f(v) is bilinear
since it is linear in each entry.
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