

Combinatorial Mesh Calculus (CMC): Lecture 6

Lectured by: Dr. Kiprian Berbatov¹
Lecture Notes Compiled by: Muhammad Azeem¹
Under the supervision of: Prof. Andrey P. Jivkov¹

 $^{1} {\tt Department\ of\ Mechanical\ and\ Aerospace\ Engineering,\ The\ University\ of\ Manchester,\ Oxford\ Road,}$

Manchester M13 9PL, UK

The University of Mancheste

$\dim \operatorname{\mathsf{Hom}}_R(V,W) = (\dim V)(\dim W)$

Let R be a commutative ring with unity (CRWU). Let V, W be finite-dimensional R-modules with

$$\dim V = n, \qquad \dim W = m.$$

$$\dim \operatorname{\mathsf{Hom}}_R(V,W) \ = \ mn.$$

Proof

Choose ordered bases $e=(e_1,\ldots,e_n)$ of V and $f=(f_1,\ldots,f_m)$ of W. For each $A\in \mathsf{Hom}_R(V,W)$ write

$$A(e_j) = \sum_{i=1}^{m} a_{ij} f_i \quad (1 \le j \le n).$$

Proof.

This identifies $A \longleftrightarrow (a_{ij}) \in M_{m \times n}(R)$. The correspondence

$$\Phi: \mathsf{Hom}_R(V, W) \simeq M_{m \times n}(R), \quad A \mapsto (a_{ij})$$

is an R-module isomorphism (linearity is entrywise; bijectivity follows by defining a map from any matrix to the unique A with those columns). Hence

$$\operatorname{Hom}_R(V,W)\cong R^{mn} \quad \Rightarrow \quad \dim\operatorname{Hom}_R(V,W)=mn.$$

Definition.

For a CRWU R and an R-module V, the *dual module* is

$$V^* := \operatorname{Hom}_R(V, R) [= \{ f : V \to R | f \text{ is linear} \}].$$

Example

$$\begin{split} (R^2)^* = & \{ f: R^2 \to R \text{ linear } \} \\ = & \{ f(x_1, x_2) = \lambda_1 x_1 + \lambda_2 x_2 \mid \lambda_1, \lambda_2 \in R \, \}. \end{split}$$

MANCHESTER Finite-dimensional Case

Remark: Dimension and Basis Dependence

Let R be a commutative ring with unity (CRWU), and let V be a finite-dimensional (free) R-module. Then

$$\dim(V^*) = \dim(\operatorname{Hom}_R(V,R)) = \dim(V).$$

Indeed, each R-linear map $f:V\to R$ is determined uniquely by its values on a basis of V. If V has basis $\{e_1,\ldots,e_n\}$, the dual module V^* has the dual basis $\{e^1,\ldots,e^n\}$ where $e^i(e_j)=\delta^i_j$; hence both spaces have the same number of basis elements.

Summary. Although dim $V = \dim V^*$ and we can identify them under a fixed basis, such identification is artificial - only the double dual V^{**} can be identified with V canonically.

MANCHESTER Finite-dimensional Case

Interpretation.

- There exists an isomorphism $V \cong V^*$, but it is *not canonical*: it depends on the chosen basis. Different choices of basis lead to different identifications between V and its dual.
- Consequently, in general algebraic treatments (over rings) that are not fields), we always distinguish V from V^* .
- In the language of physics and differential geometry:
 - Elements of V are contravariant vectors typically represented as column vectors.
 - Elements of V^* are covariant vectors typically represented as row vectors or linear functionals acting on V.
- Thus, V and V^* play dual but complementary roles: one represents directions, the other represents measurements (functionals) on those directions.

Kronecker Delta

Let V be finite-dimensional with ordered basis $e=(e_1,\ldots,e_n)$. The *dual basis* $e^*=(e^1,\ldots,e^n)$ is the family of linear forms $e^i:V\to R$ defined by

$$e^i(e_j) = \delta^i_j \quad (1 \le i, j \le n),$$

where the Kronecker delta is

$$\delta_j^i = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Example (standard \mathbb{R}^2 **).** With $e_1=(1,0), e_2=(0,1),$ the dual basis is given by projections

$$e^{1}(x_{1},x_{2})=x_{1}, \qquad e^{2}(x_{1},x_{2})=x_{2}.$$

MANCHESIER Reconstruction via Dual Basis

Proposition

Let V be finite-dimensional, $e = (e_1, \ldots, e_n)$ a basis and $e^* = (e^1, \dots, e^n)$ its dual. Then for every $v \in V$,

$$v = \sum_{i=1}^{n} e^{i}(v) e_{i}.$$

Proof.

Write $v = \sum_{i=1}^{n} \lambda_i e_i$. Apply e^i :

$$e^{i}(v) = \sum_{j=1}^{n} \lambda_{j} e^{i}(e_{j}) = \sum_{j=1}^{n} \lambda_{j} \delta_{j}^{i} = \lambda_{i}.$$

Hence
$$\sum_{i} e^{i}(v)e_{i} = \sum_{i} \lambda_{i}e_{i} = v$$
.

MANCHESIER Standard & Nonstandard Basis in \mathbb{R}^2

Example (standard \mathbb{R}^2).

For $v = (v_1, v_2)$ and $e = (e_1, e_2)$ standard,

$$v = e^{1}(v)e_{1} + e^{2}(v)e_{2} = v_{1}(1,0) + v_{2}(0,1) = (v_{1}, v_{2}).$$

Example (nonstandard \mathbb{R}^2).

Let $e_1 = (1, 2)$, $e_2 = (4, 1)$. Seek $e^1, e^2 \in (\mathbb{R}^2)^*$ such that

$$e^{1}(e_{1}) = 1, \ e^{1}(e_{2}) = 0, \qquad e^{2}(e_{1}) = 0, \ e^{2}(e_{2}) = 1.$$

Solve for e^1 . Write $e^1(x_1, x_2) = \lambda_1 x_1 + \lambda_2 x_2$. Then

$$\lambda_1 + 2\lambda_2 = 1, \qquad 4\lambda_1 + \lambda_2 = 0.$$

From the second, $\lambda_2 = -4\lambda_1$. Substitute in the first:

$$\lambda_1 - 8\lambda_1 = 1 \Rightarrow -7\lambda_1 = 1 \Rightarrow \lambda_1 = -\frac{1}{7}, \quad \lambda_2 = \frac{4}{7}.$$

Thus $e^1(x_1, x_2) = -\frac{1}{7}x_1 + \frac{4}{7}x_2$.

Solve for e^2 . Let $e^2(x_1, x_2) = \mu_1 x_1 + \mu_2 x_2$. Then

$$\mu_1 + 2\mu_2 = 0, \qquad 4\mu_1 + \mu_2 = 1.$$

From the first, $\mu_1 = -2\mu_2$. Substitute:

$$-8\mu_2 + \mu_2 = 1 \Rightarrow -7\mu_2 = 1 \Rightarrow \mu_2 = -\frac{1}{7}, \quad \mu_1 = \frac{2}{7}.$$

Thus $e^2(x_1, x_2) = \frac{2}{7}x_1 - \frac{1}{7}x_2$.

Check. One verifies $e^i(e_j)=\delta^i_j$ and the reconstruction

$$v = e^1(v) e_1 + e^2(v) e_2$$
 for all $v \in \mathbb{R}^2$.

Dual Rows are the Inverse Matrix

Let E be the 2×2 matrix with columns e_1, e_2 :

$$E = \begin{bmatrix} 1 & 4 \\ 2 & 1 \end{bmatrix}, \qquad \det E = 1 \cdot 1 - 4 \cdot 2 = -7 \neq 0.$$

Then

$$E^{-1} = \frac{1}{-7} \begin{bmatrix} 1 & -4 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{7} & \frac{4}{7} \\ \frac{2}{7} & -\frac{1}{7} \end{bmatrix}.$$

Observation. The rows of E^{-1} are exactly the coefficient vectors of e^1 and e^2 :

$$e^{1}(x_{1}, x_{2}) = \begin{bmatrix} -\frac{1}{7} & \frac{4}{7} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}, \quad e^{2}(x_{1}, x_{2}) = \begin{bmatrix} \frac{2}{7} & -\frac{1}{7} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}.$$

Thus (e^1,e^2) corresponds to E^{-1} and (\cdot) -coordinates satisfy $v^e=$

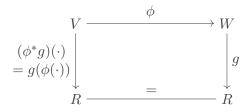
Dual Map

Let V, W be R-modules and $\phi \in \operatorname{Hom}_R(V, W)$. The *dual map*

$$\phi^*: W^* \longrightarrow V^*, \qquad \phi^*(g) := g \circ \phi$$

is R-linear. In evaluation form, for $g \in W^*$ and $v \in V$,

$$(\phi^*g)(v) = g(\phi(v)).$$



MANCHESIER Corollary: Coordinates via Dual Basis

Let R be a CRWU, V, W finite-dimensional R-modules with ordered bases

$$e = (e_1, \dots, e_n) \text{ of } V, \qquad f = (f_1, \dots, f_m) \text{ of } W,$$

and dual bases $e^* = (e^1, \dots, e^n), f^* = (f^1, \dots, f^m)$. For $\phi \in$ $\operatorname{Hom}_{R}(V,W)$ and each i,

$$\phi(e_j) = \sum_{i=1}^m f^i(\phi(e_j)) f_i.$$

Hence the matrix of ϕ w.r.t. (e, f) is

$$(\phi)_e^f = \{f^i(\phi(e_j))\}_{1 < j < n}^{1 \le i \le m} \in M_{m \times n}(R).$$

Proof.

By definition of the dual basis, any $w \in W$ decomposes as $w = \sum_i f^i(w) f_i$. Apply this to $w = \phi(e_i)$.

Matrix of ϕ^* is the Transpose of $(\phi)_e^f$

Let V,W be finite-dimensional, $e=(e_1,\ldots,e_n), f=(f_1,\ldots,f_m)$ with dual bases $e^*=(e^1,\ldots,e^n), f^*=(f^1,\ldots,f^m).$ For $\phi\in \operatorname{Hom}_R(V,W)$,

$$(\phi^*)_{f^*}^{e^*} = ((\phi)_e^f)^T.$$

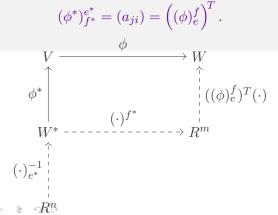
Proof

Write $\phi(e_j) = \sum_{i=1}^m a_{ij} f_i$; thus $(\phi)_e^f = (a_{ij})$. We compute the coordinates of $\phi^*(f^i) \in V^*$ in the basis e^* :

$$\phi^*(f^i) = f^i \circ \phi \in V^*,$$

so for each j, $e^j\left(\phi^*(f^i)\right)=\left(\phi^*(f^i)\right)(e_j)=f^i(\phi(e_j))$. But $f^i(\phi(e_j))=a_{ij}$ by the very definition of the coefficients a_{ij} .

Hence the j-th coordinate of $\phi^*(f^i)$ w.r.t. e^* equals a_{ij} . Therefore, the matrix with columns $\left[\phi^*(f^1)\right]_{e^*},\ldots,\left[\phi^*(f^m)\right]_{e^*}$ is (a_{ij}) with indices swapped, i.e.



MANCHESIER Dual Reverses Composition

Proposition. Let U, V, W be R-modules, $\phi \in \operatorname{Hom}_R(U, V), \psi \in$ $\operatorname{Hom}_{R}(V,W)$. Then

$$(\psi \circ \phi)^* = \phi^* \circ \psi^* : W^* \to U^*.$$

Proof.

For $g \in W^*$ and $u \in U$,

$$((\psi \circ \phi)^* g)(u) = g((\psi \circ \phi)(u)) = g(\psi(\phi(u))) = (\psi^* g)(\phi(u))$$

= $(\phi^* (\psi^* g))(u)$.

Since both sides define the same functional on every u, we have equality of maps $W^* \to U^*$.

MANCHESTER Dual Reverses Composition

1. The sequence of maps on the vector spaces runs in the forward direction:

$$U \xrightarrow{\phi} V \xrightarrow{\psi} W$$

2. The sequence of the dual maps runs in the reverse direction:

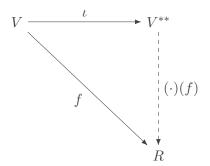
$$W^* \xleftarrow{\psi^*} V^* \xleftarrow{\phi^*} U^*$$

The dual map ϕ^* is defined by $(\phi^*f)(u)=f(\phi(u))$, where $f\in V^*$ and $u\in U$. The composition rule for duals also reverses the order: $(\psi\circ\phi)^*=\phi^*\circ\psi^*$.

MANCHESTER Canonical Evaluation Map $\iota: V \to V^{**}$

Definition. For any R-module V, define the *evaluation* (canonical) map

$$\iota: V \longrightarrow V^{**} = \operatorname{Hom}_R(V^*, R), \qquad \iota(v)(f) := f(v) \quad (f \in V^*).$$



Finite-dimensional Case

If V is finite-dimensional, then ι is an isomorphism; we write $V \simeq V^{**}$ canonically.

Proof.

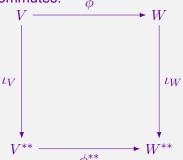
Fix a basis $e=(e_1,\ldots,e_n)$ with dual $e^*=(e^1,\ldots,e^n)$. Then $\iota(e_j)$ is the functional on V^* sending f to $f(e_j)$. In the dual basis, $\iota(e_j)$ corresponds to the coordinate row $(e^1(e_j),\ldots,e^n(e_j))=(0,\ldots,1,\ldots,0)$, hence ι sends a basis to a basis and is therefore an isomorphism. Basis-independence: if we change basis by an invertible matrix E, the dual basis changes by E^{-1} , and the resulting matrix of ι remains the identity; thus ι is canonical.

MANCHESIER Naturality with Respect to Double Dual

Let V, W be finite-dimensional, and $\phi \in \text{Hom}_R(V, W)$. The double dual map $\phi^{**}:V^{**}\to W^{**}$ is defined by

$$\phi^{**}(\Lambda) := \Lambda \circ \phi^*, \qquad (\Lambda \in V^{**}).$$

Then the square commutes:



Proof.

For $v \in V$ and $g \in W^*$,

$$(\phi^{**} \circ \iota_V)(v)(g) = \iota_V(v)(\phi^*g) = (\phi^*g)(v) = g(\phi(v))$$

= $\iota_W(\phi(v))(g)$
= $(\iota_W \circ \phi)(v)(g)$.

Thus
$$\phi^{**} \circ \iota_V = \iota_W \circ \phi$$
.

MANCHESIER Bilinear Maps and Currying

Definition.

Let U, V, W be R-modules. A map $\Phi: U \times V \to W$ is bilinear if

$$\Phi(u_1 + u_2, v) = \Phi(u_1, v) + \Phi(u_2, v), \quad \Phi(\lambda u, v) = \lambda \Phi(u, v),$$

$$\Phi(u, v_1 + v_2) = \Phi(u, v_1) + \Phi(u, v_2), \quad \Phi(u, \lambda v) = \lambda \Phi(u, v).$$

Equivalently, the *curried* map $\widetilde{\Phi}: U \to \mathsf{Hom}_R(V, W)$, $\Phi(u)(v) = \Phi(u, v)$, is *R*-linear:

$$\Phi \in \mathcal{L}(U, V; W) \iff \widetilde{\Phi} \in \mathsf{Hom}_R(U, \mathsf{Hom}_R(V, W))$$
.

- Dot product (over a CRWU contained in \mathbb{R}): $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i : R^n \times R^n \to R$ is bilinear.
- Evaluation: eval : $V \times V^* \to R$, eval(v, f) = f(v) is bilinear since it is linear in each entry.

