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Proposition

dimHomR(V,W ) = (dimV )(dimW )

Let R be a commutative ring with unity (CRWU). Let V,W be

finite-dimensional R–modules with

dimV = n, dimW = m.

dimHomR(V,W ) = mn.

Proof

Choose ordered bases e = (e1, . . . , en) of V and f = (f1, . . . , fm)
ofW . For each A ∈ HomR(V,W ) write

A(ej) =

m∑
i=1

aijfi (1 ≤ j ≤ n).
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Proposition

Proof.

This identifies A←→ (aij) ∈Mm×n(R). The correspondence

Φ : HomR(V,W ) 'Mm×n(R), A 7→ (aij)

is an R–module isomorphism (linearity is entrywise; bijectivity

follows by defining a map from any matrix to the unique A with

those columns). Hence

HomR(V,W ) ∼= Rmn ⇒ dimHomR(V,W ) = mn.

3



Dual Module

Definition.

For a CRWU R and an R–module V , the dual module is

V ∗ := HomR(V,R) [= {f : V → R|f is linear}] .

Example

(R2)∗ ={f : R2 → R linear }
={ f(x1, x2) = λ1x1 + λ2x2 | λ1, λ2 ∈ R }.
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Finite-dimensional Case

Remark: Dimension and Basis Dependence

Let R be a commutative ring with unity (CRWU), and let V be a

finite–dimensional (free) R–module. Then

dim(V ∗) = dim (HomR(V,R)) = dim(V ).

Indeed, each R–linear map f : V → R is determined uniquely by

its values on a basis of V . If V has basis {e1, . . . , en}, the dual

module V ∗ has the dual basis {e1, . . . , en} where ei(ej) = δij ;
hence both spaces have the same number of basis elements.

Summary. Although dimV = dimV ∗ and we can identify them

under a fixed basis, such identification is artificial - only the dou-

ble dual V ∗∗ can be identified with V canonically.
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Finite-dimensional Case

Interpretation.

• There exists an isomorphism V ∼= V ∗, but it is not canonical:

it depends on the chosen basis. Different choices of basis

lead to different identifications between V and its dual.

• Consequently, in general algebraic treatments (over rings

that are not fields), we always distinguish V from V ∗.

• In the language of physics and differential geometry:

– Elements of V are contravariant vectors — typically

represented as column vectors.

– Elements of V ∗ are covariant vectors — typically represented

as row vectors or linear functionals acting on V .

• Thus, V and V ∗ play dual but complementary roles: one

represents directions, the other represents measurements

(functionals) on those directions.
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Dual Basis

Kronecker Delta

Let V be finite-dimensional with ordered basis e = (e1, . . . , en).
The dual basis e∗ = (e1, . . . , en) is the family of linear forms

ei : V → R defined by

ei(ej) = δij (1 ≤ i, j ≤ n),

where the Kronecker delta is

δij =

{
1, i = j,

0, i 6= j.

Example (standard R2). With e1 = (1, 0), e2 = (0, 1), the dual

basis is given by projections

e1(x1, x2) = x1, e2(x1, x2) = x2. 7



Reconstruction via Dual Basis

Proposition

Let V be finite-dimensional, e = (e1, . . . , en) a basis and

e∗ = (e1, . . . , en) its dual. Then for every v ∈ V ,

v =

n∑
i=1

ei(v) ei.

Proof.

Write v =
∑n

j=1 λjej . Apply e
i:

ei(v) =

n∑
j=1

λje
i(ej) =

n∑
j=1

λjδ
i
j = λi.

Hence
∑

i e
i(v)ei =

∑
i λiei = v.
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Standard & Nonstandard Basis in R2

Example (standard R2).

For v = (v1, v2) and e = (e1, e2) standard,

v = e1(v)e1 + e2(v)e2 = v1(1, 0) + v2(0, 1) = (v1, v2).

Example (nonstandard R2).

Let e1 = (1, 2), e2 = (4, 1). Seek e1, e2 ∈ (R2)∗ such that

e1(e1) = 1, e1(e2) = 0, e2(e1) = 0, e2(e2) = 1.
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Example

Solve for e1. Write e1(x1, x2) = λ1x1 + λ2x2. Then

λ1 + 2λ2 = 1, 4λ1 + λ2 = 0.

From the second, λ2 = −4λ1. Substitute in the first:

λ1 − 8λ1 = 1⇒ −7λ1 = 1⇒ λ1 = −
1

7
, λ2 =

4

7
.

Thus e1(x1, x2) = −1
7x1 +

4
7x2.

Solve for e2. Let e2(x1, x2) = µ1x1 + µ2x2. Then

µ1 + 2µ2 = 0, 4µ1 + µ2 = 1.
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Example

From the first, µ1 = −2µ2. Substitute:

−8µ2 + µ2 = 1⇒ −7µ2 = 1⇒ µ2 = −
1

7
, µ1 =

2

7
.

Thus e2(x1, x2) =
2
7x1 −

1
7x2.

Check. One verifies ei(ej) = δij and the reconstruction

v = e1(v) e1 + e2(v) e2 for all v ∈ R2.
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Matrix View

Dual Rows are the Inverse Matrix

Let E be the 2× 2 matrix with columns e1, e2:

E =

[
1 4
2 1

]
, detE = 1 · 1− 4 · 2 = −7 6= 0.

Then

E−1 =
1

−7

[
1 −4
−2 1

]
=

[
−1

7
4
7

2
7 −1

7

]
.

Observation. The rows of E−1 are exactly the coefficient vectors

of e1 and e2:

e1(x1, x2) =
[
−1

7
4
7

][x1
x2

]
, e2(x1, x2) =

[
2
7 −

1
7

][x1
x2

]
.

Thus (e1, e2) corresponds to E−1 and (·)-coordinates satisfy ve =
E−1vstd. 12



Definition

Dual Map

Let V,W be R–modules and φ ∈ HomR(V,W ). The dual map

φ∗ :W ∗ −→ V ∗, φ∗(g) := g ◦ φ

is R–linear. In evaluation form, for g ∈W ∗ and v ∈ V ,

(φ∗g)(v) = g (φ(v)) .

V W

R R

φ

(φ∗g)(·)
= g(φ(·))

g

=
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Corollary: Coordinates via Dual Basis

Let R be a CRWU, V,W finite-dimensional R–modules with or-

dered bases

e = (e1, . . . , en) of V, f = (f1, . . . , fm) ofW,

and dual bases e∗ = (e1, . . . , en), f∗ = (f1, . . . , fm). For φ ∈
HomR(V,W ) and each j,

φ(ej) =

m∑
i=1

f i(φ(ej)) fi.

Hence the matrix of φ w.r.t. (e, f) is

(φ)fe =
{
f i(φ(ej))

}1≤i≤m
1≤j≤n ∈Mm×n(R).

Proof.

By definition of the dual basis, any w ∈W decomposes as

w =
∑

i f
i(w)fi. Apply this to w = φ(ej). 14



Proposition

Matrix of φ∗ is the Transpose of (φ)fe

Let V,W be finite-dimensional, e = (e1, . . . , en), f = (f1, . . . , fm)
with dual bases e∗ = (e1, . . . , en), f∗ = (f1, . . . , fm). For
φ ∈ HomR(V,W ),

(φ∗)e
∗
f∗ =

(
(φ)fe

)T
.

Proof

Write φ(ej) =
∑m

i=1 aijfi; thus (φ)fe = (aij). We compute the

coordinates of φ∗(f i) ∈ V ∗ in the basis e∗:

φ∗(f i) = f i ◦ φ ∈ V ∗,

so for each j, ej
(
φ∗(f i)

)
=

(
φ∗(f i)

)
(ej) = f i(φ(ej)). But

f i(φ(ej)) = aij by the very definition of the coefficients aij .
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Proof

Hence the j-th coordinate of φ∗(f i) w.r.t. e∗ equals aij .
Therefore, the matrix with columns

[
φ∗(f1)

]
e∗
, . . . ,

[
φ∗(fm)

]
e∗
is

(aij) with indices swapped, i.e.

(φ∗)e
∗
f∗ = (aji) =

(
(φ)fe

)T
.

V W

W ∗ Rm

Rn

φ

φ∗

(·)f∗
((φ)fe )T (·)

(·)−1
e∗
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Dual Reverses Composition

Proposition. Let U, V,W be R–modules, φ ∈ HomR(U, V ), ψ ∈
HomR(V,W ). Then

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗ :W ∗ → U∗.

Proof.

For g ∈W ∗ and u ∈ U ,

((ψ ◦ φ)∗g) (u) =g ((ψ ◦ φ)(u)) = g (ψ(φ(u))) = (ψ∗g) (φ(u))

=(φ∗(ψ∗g))(u).

Since both sides define the same functional on every u, we have

equality of mapsW ∗ → U∗.
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Dual Reverses Composition

1. The sequence of maps on the vector spaces runs in the

forward direction:

U
φ−→ V

ψ−→W

2. The sequence of the dual maps runs in the reverse direction:

W ∗ ψ∗
←− V ∗ φ∗←− U∗

The dual map φ∗ is defined by (φ∗f)(u) = f(φ(u)), where f ∈ V ∗

and u ∈ U . The composition rule for duals also reverses the

order: (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.
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Canonical Evaluation Map ι : V → V ∗∗

Definition. For any R–module V , define the evaluation (canoni-

cal) map

ι : V −→ V ∗∗ = HomR(V
∗, R), ι(v)(f) := f(v) (f ∈ V ∗).

V V ∗∗

R

ι

f
(·)(f)
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Proposition

Finite-dimensional Case

If V is finite-dimensional, then ι is an isomorphism; we write

V ' V ∗∗ canonically.

Proof.

Fix a basis e = (e1, . . . , en) with dual e∗ = (e1, . . . , en). Then ι(ej)
is the functional on V ∗ sending f to f(ej). In the dual basis, ι(ej)
corresponds to the coordinate row

(e1(ej), . . . , e
n(ej)) = (0, . . . , 1, . . . , 0), hence ι sends a basis to a

basis and is therefore an isomorphism. Basis-independence: if

we change basis by an invertible matrix E, the dual basis

changes by E−1T , and the resulting matrix of ι remains the

identity; thus ι is canonical.
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Naturality with Respect to Double Dual

Let V,W be finite-dimensional, and φ ∈ HomR(V,W ). The double

dual map φ∗∗ : V ∗∗ →W ∗∗ is defined by

φ∗∗(Λ) := Λ ◦ φ∗, (Λ ∈ V ∗∗).

Then the square commutes:

V W

V ∗∗ W ∗∗

φ

ιV ιW

φ∗∗
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Proof

Proof.

For v ∈ V and g ∈W ∗,

(φ∗∗ ◦ ιV ) (v)(g) =ιV (v)(φ∗g) = (φ∗g)(v) = g(φ(v))

=ιW (φ(v))(g)

= (ιW ◦ φ) (v)(g).

Thus φ∗∗ ◦ ιV = ιW ◦ φ.
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Bilinear Maps and Currying

Definition.

Let U, V,W be R–modules. A map Φ : U × V →W is bilinear if

Φ(u1 + u2, v) = Φ(u1, v) + Φ(u2, v), Φ(λu, v) = λΦ(u, v),

Φ(u, v1 + v2) = Φ(u, v1) + Φ(u, v2), Φ(u, λv) = λΦ(u, v).

Equivalently, the curried map Φ̃ : U → HomR(V,W ),
Φ̃(u)(v) = Φ(u, v), is R–linear:

Φ ∈ L(U, V ;W ) ⇐⇒ Φ̃ ∈ HomR (U,HomR(V,W )) .
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Examples

• Dot product (over a CRWU contained in R):
〈x, y〉 =

∑n
i=1 xiyi : R

n ×Rn → R is bilinear.

• Evaluation: eval : V × V ∗ → R, eval(v, f) = f(v) is bilinear
since it is linear in each entry.

U × V W

U

HomR(V,W )

Φ

curry

Φ̃

ev
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Thanks
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