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Diffeomorphisms

Definition

Let n ∈ N and U, V ⊆ Rn. We say that U and V are

diffeomorphic if there exist smooth maps

f : U → V, g : V → U

such that g ◦ f = idU and f ◦ g = idV . We write U ∼= V.

Examples

1 U = (−π
2 ,

π
2 ), V = R, f = tan, g = arctan; both smooth.

2 Any open n-brick (a1, b1)× · · · × (an, bn) is diffeomorphic to

Rn.
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Diffeomorphisms - Examples

Examples

3 U = [0, π2 ), V = R≥0, tan : U → V is a diffeomorphism.

4 Generalization: U = [a1, b1)× (a2, b2)× · · · × (an, bn),
V = [0,∞)× Rn−1 are diffeomorphic by tan–like component

maps.

U

[a1, b1)× (a2, b2)

V = [0,∞)× R
diffeo f

inverse g
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Smooth Manifolds (with Boundary)

Definition

Let m,n ∈ N andM ⊆ Rm+n. We say thatM is a smooth

n–manifold (with boundary) if for every x ∈M one of the

following holds:

1. (Interior point) There exists an open neighbourhood V of x
(x ∈ V ⊆M ) inM and an open set U ⊆ Rn together with a

bijective immersion f : U → V such that Df has full rank n.

2. (Boundary point) There exists a neighbourhood V of x
(x ∈ V ⊆M ) inM and U ⊆ Rn diffeomorphic to a

half–space, and a bijective immersion f : U → V .
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Examples of Manifolds

Examples

1. Any open setM ⊆ Rn is a smooth n–manifold without

boundary. For any x ∈M take U = V =M f = idM .

2. n = 2,M = B1(0) = {(x, y) ∈ R2 | x2 + y2 ≤ 1} is a
2–manifold with boundary S1 = {(x, y) | x2 + y2 = 1}.

3. For p = (1, 0) ∈ S1, a chart can be built from a rectangle in

parameter space mapping smoothly to a circular

neighbourhood onM .

U

p

M = B1(0)

f : U → V ⊂M
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More Examples and Remarks

Examples

4 For any n ∈ N,

B1(0) = {(x1, . . . , xn) ∈ Rn | x21 + · · ·+ x2n < 1}

is a smooth n–manifold with boundary Sn−1.

5 The (n− 1)–sphere

Sn−1 = {(x1, . . . , xn) ∈ Rn | x21 + · · ·+ x2n = 1}

is a smooth (n− 1)–manifold without boundary.

6 IfM is a smooth n–manifold with boundary ∂M , then ∂M is

a smooth (n− 1)–manifold without boundary and

∂(∂M) = ∅.
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Local Chart on the Circle near p = (1, 0)

Note (efficient construction of a chart on S1)

LetM = S1 = {(x, y) ∈ R2 | x2 + y2 = 1} and fix p = (1, 0) ∈ S1.

Choose angles α, β > 0 with α+ β < 2π, and set

U := (−α, β) ⊂ R, V := {(cosφ, sinφ) | φ ∈ (−α, β)} ⊂ S1.

Define the map

f : U → V, f(φ) = (cosφ, sinφ).

Then f is a bijective immersion: its Jacobian (column) is

Df(φ) =

(
− sinφ

cosφ

)
6=

(
0

0

)
for all φ ∈ U.
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Local Chart on the Circle near p = (1, 0)

Construction of a chart on S1)

Hence (U, f) is a smooth chart around p = f(0). Why V cannot

be all of S1: the angle φ is 2π-periodic, so no single global

parametrization φ 7→ (cosφ, sinφ) is injective on all of S1. One

needs at least two overlapping charts (e.g. remove (±1, 0)) to
cover S1.

p

V = f(U) ⊂ S1

−α β

U = (−α, β)

f(φ) = (cosφ, sinφ)
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Local Charts on a Smooth Manifold

Definition

LetM be a smooth n–manifold. A chart (or local

parametrization) onM is a smooth bijective immersion

f : U → V, U ⊆open M,

where

V ⊆

{
Rn, if U ⊆ Int(M),

[0,∞)× Rn−1, if U ∩ ∂M 6= ∅.

Both f and its inverse f−1 are smooth. The components of f
define the local coordinates on U .
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Local Charts on a Smooth Manifold

Intuition

Each chart provides a smooth “flattening” of a curved region ofM
into Rn. Locally, the manifold looks like ordinary Euclidean space,

even if globally it may curve or close on itself.

M

U ⊂M

V ⊂ Rn

f : U → V
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Atlases and Transition Maps

Definition

An atlas on a smooth manifoldM is a family of charts

{(Ui, fi) | i ∈ I},
⋃
i∈I

Ui =M,

such that all transition maps

fj ◦ f−1
i : fi(Ui ∩ Uj) → fj(Ui ∩ Uj)

are smooth wherever the charts overlap. Different atlases that

are compatible define the same smooth structure onM .
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Atlases and Transition Maps

Geometric Idea

Each chart gives a local coordinate system, and their overlaps fit

together smoothly. This collection allows calculus onM .

M

(U1, f1)
(U2, f2)

(U3, f3)

Rn Rn

f1 f2
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Example

Construction

LetM = S1 = {(x, y) ∈ R2 | x2 + y2 = 1}. Since
f(φ) = (cosφ, sinφ) is 2π–periodic, no single chart covers all of

S1. We define two overlapping charts:

U1 = S1 \ {(1, 0)}, f1(φ) = (cosφ, sinφ), φ ∈ (0, 2π),

U2 = S1 \ {(−1, 0)}, f2(θ) = (cos θ, sin θ), θ ∈ (−π, π).

On the overlap U1 ∩ U2, the transition map f−1
2 ◦ f1 is smooth,

hence {(U1, f1), (U2, f2)} forms an atlas.
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Example

M = S1

U1

U2

U1 ∩ U2U1 ∩ U2

(1, 0)(−1, 0)
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Smooth Maps between Manifolds

Definition

LetM,N be smooth manifolds with dimM = m and dimN = n.
A map f :M → N is smooth if for every chart (U, φ) onM and

every chart (V, ψ) on N with f(U) ⊆ V , the composition

ψ ◦ f ◦ φ−1 : φ(U) ⊆ Rm → Rn

is smooth in the classical sense. The space of all smooth maps is

denoted C∞(M,N). If N = R, we write F(M) := C∞(M,R) — a

commutative R–algebra with unity.

M N

Rm Rn

f

φ ψ

ψ ◦ f ◦ φ−1
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Example: Inclusion S1 ↪→ S2

Example

Let

M = S1 ={(x, y) ∈ R2 | x2 + y2 = 1},
N = S2 ={(x, y, z) ∈ R3 | x2 + y2 + z2 = 1},

and define f :M → N by f(x, y) = (x, y, 0). For charts:

α :(E,F ) → U, α(φ) = (cosφ, sinφ),

β :(A,B)× (C,D) → V, β(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ).

Then

β
(π
2
, φ
)
= (cosφ, sinφ, 0) = f(cosφ, sinφ) = f(α(φ)),

showing the compatibility of local charts.
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Example

(E,F )

U ⊆ S1 V ⊆ S2

(A,B)× (C,D)

α
f

β

x(φ) = (π/2, φ)

17



Vector Fields on a Smooth Manifold

Definition

LetM be a smooth manifold. A vector field onM is an operator

X : F(M) → F(M) satisfying:

1. ∀f, g ∈ F(M), X(fg) = X(f)g + fX(g) (Leibniz rule)

2. X is R–linear.

Examples

• M = R, X =
d

dx
, then X(fg) = f ′g + fg′(= ∂f

∂xg + f ∂g
∂x).

• M = Rn, X =

n∑
i=1

Xi(x)
∂

∂xi
.
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The Module of Vector Fields

Theorem

LetM be a smooth manifold and X (M) the set of vector fields on

M . Define scalar multiplication by

(fX)(g) = f (Xg), f, g ∈ F(M), X ∈ X (M).

Then (X (M),+, ·) is an F(M)–module.

Local Form

If (U, φ) is a chart with coordinates (x1, . . . , xn), then

X (U) is a free F(U)–module with basis
∂

∂x1
, . . . ,

∂

∂xn
.

Every X ∈ X (U) can be expressed as

X = f1
∂

∂x1
+ · · ·+ fn

∂

∂xn
, fi ∈ F(U).
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Example: Euler Vector Field in R2

Example

The Euler vector field on R2 is

X = x
∂

∂x
+ y

∂

∂y
.

For f(x, y), we have

Xf = x
∂f

∂x
+ y

∂f

∂y
.
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Example: Euler Vector Field in R2

X = x∂x + y∂y
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Differential Forms

Definition

LetM be a smooth manifold. The space of differential forms is

Ω•(M) := Λ•((X (M))∗).

If dimM = n, in local coordinates (x1, . . . , xn), the basis of X (U)
is ∂/∂xi, and the dual basis of (X (U))∗ = Ω1(U) is dxi, satisfying

dxi

(
∂

∂xj

)
= δij .
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Differential Forms

Examples

• R2: Ω0M = F(M),

– Ω1M = {fxdx+ fydy},
– Ω2M = {g dx ∧ dy}.

• R3:

– Ω0M = F(M),
– Ω1M = {f1dx+ f2dy + f3dz},
– Ω2M = {g1dy ∧ dz + g2dz ∧ dx+ g3dx ∧ dy},
– Ω3M = {h dx ∧ dy ∧ dz}.
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Exterior Derivative

Definition

For a smooth manifoldM , the exterior derivative is the graded

operator

d : Ω•(M) → Ω•(M), dp : Ω
p(M) → Ωp+1(M),

defined by:

1. For f ∈ Ω0(M) = F(M),

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn.

2. For ω, η ∈ Ω•(M),

d(ω ∧ η) = dω ∧ η + (−1)degωω ∧ dη.
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Exterior Derivative

Definition

3 dp+1 ◦ dp = 0 (cochain complex property).

Ω0(M) Ω1(M) Ω2(M) Ω3(M)
d0 d1 d2
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Example: Gradient and Curl in R2

Example

LetM = R2 and f ∈ Ω0(M), then

df =
∂f

∂x
dx+

∂f

∂y
dy = (∇f)[.

For ω = P dx+Qdy ∈ Ω1(M),

dω =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy,

which corresponds to the curl of (P,Q).
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Example: Gradient and Curl in R2

Example

∇f
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Summary of Lecture

• Introduced diffeomorphisms and smooth manifolds.

• Described examples: disks, spheres, and general n–bricks
as manifolds or manifolds with corners.

• Defined charts, local coordinates, and atlases with geometric

illustrations.

• Demonstrated circle parametrization and Jacobian regularity

for immersion.

• Defined smooth maps between manifolds using charts and

commutative diagrams.

• Introduced vector fields as derivations and showed X (M) is
an F(M)–module. Illustrated the Euler vector field on R2

geometrically.

• Defined differential forms, and exterior derivative. Showed

dp+1 ◦ dp = 0, relating gradients and curls in R2 to Green’s

theorem.
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Thanks
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