

Combinatorial Mesh Calculus (CMC): Lecture 10

Lectured by: Dr. Kiprian Berbatov¹
Lecture Notes Compiled by: Muhammad Azeem¹
Under the supervision of: Prof. Andrey P. Jivkov¹

Under the supervision of: Prof. Andrey P. Jivkov

Manchester M13 9PL, UK

 $^{^{1}}$ Department of Mechanical and Aerospace Engineering, The University of Manchester, Oxford Road,

MANCHESIER Diffeomorphisms

Definition

Let $n \in \mathbb{N}$ and $U, V \subseteq \mathbb{R}^n$. We say that U and V are diffeomorphic if there exist smooth maps

$$f: U \to V, \quad g: V \to U$$

such that $g \circ f = \mathrm{id}_U$ and $f \circ g = \mathrm{id}_V$. We write $U \cong V$.

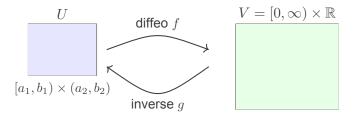
Examples

- 1 $U=(-\frac{\pi}{2},\frac{\pi}{2}), V=\mathbb{R}, f=\text{tan}, g=\text{arctan}; \text{ both smooth}.$
- 2 Any open *n*-brick $(a_1,b_1) \times \cdots \times (a_n,b_n)$ is diffeomorphic to \mathbb{R}^n

MANCHESIER Diffeomorphisms - Examples

Examples

- 3 $U=[0,\frac{\pi}{2}), V=\mathbb{R}_{>0}$, tan : $U\to V$ is a diffeomorphism.
- 4 Generalization: $U = [a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$, $V = [0, \infty) \times \mathbb{R}^{n-1}$ are diffeomorphic by tan-like component maps.



MANCHESIER Smooth Manifolds (with Boundary)

Definition

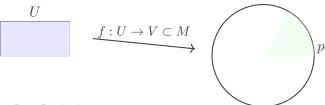
Let $m, n \in \mathbb{N}$ and $M \subseteq \mathbb{R}^{m+n}$. We say that M is a **smooth** *n*-manifold (with boundary) if for every $x \in M$ one of the following holds:

- 1. (Interior point) There exists an open neighbourhood V of x $(x \in V \subseteq M)$ in M and an open set $U \subseteq \mathbb{R}^n$ together with a bijective immersion $f: U \to V$ such that Df has full rank n.
- 2. (Boundary point) There exists a neighbourhood V of x $(x \in V \subseteq M)$ in M and $U \subseteq \mathbb{R}^n$ diffeomorphic to a half–space, and a bijective immersion $f: U \to V$.

Examples of Manifolds

Examples

- 1. Any open set $M \subseteq \mathbb{R}^n$ is a smooth n-manifold without boundary. For any $x \in M$ take U = V = M $f = \mathrm{id}_M$.
- 2. $n=2, M=\overline{B_1(0)}=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 1\}$ is a 2–manifold with boundary $S^1=\{(x,y)\mid x^2+y^2=1\}.$
- 3. For $p=(1,0)\in S^1$, a chart can be built from a rectangle in parameter space mapping smoothly to a circular neighbourhood on M.



MANCHESTER More Examples and Remarks

Examples

4 For any $n \in \mathbb{N}$,

$$B_1(0) = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 < 1\}$$

is a smooth n-manifold with boundary S^{n-1} .

5 The (n-1)-sphere

$$S^{n-1} = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 = 1\}$$

is a smooth (n-1)-manifold without boundary.

6 If M is a smooth n-manifold with boundary ∂M , then ∂M is a smooth (n-1)-manifold without boundary and $\partial(\partial M) = \varnothing$.

MANCHESIER Local Chart on the Circle near p = (1,0)

Note (efficient construction of a chart on S^1)

Let $M = S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ and fix $p = (1, 0) \in S^1$. Choose angles $\alpha, \beta > 0$ with $\alpha + \beta < 2\pi$, and set

$$U:=(-\alpha,\beta)\subset\mathbb{R}, \qquad V:=\{(\cos\phi,\sin\phi)\mid \phi\in(-\alpha,\beta)\}\subset S^1.$$

Define the map

$$f: U \to V, \qquad f(\phi) = (\cos \phi, \sin \phi).$$

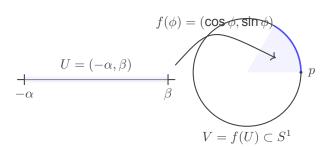
Then f is a bijective immersion: its Jacobian (column) is

$$Df(\phi) = \begin{pmatrix} -\sin\phi \\ \cos\phi \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{for all } \phi \in U.$$

MANCHESIER Local Chart on the Circle near p = (1,0)

Construction of a chart on S^1)

Hence (U, f) is a smooth chart around p = f(0). Why V cannot be all of S^1 : the angle ϕ is 2π -periodic, so no single global parametrization $\phi \mapsto (\cos \phi, \sin \phi)$ is injective on all of S^1 . One needs at least two overlapping charts (e.g. remove $(\pm 1, 0)$) to cover S^1 .



MANCHESIER Local Charts on a Smooth Manifold

Definition

Let M be a smooth n-manifold. A **chart** (or local parametrization) on M is a smooth bijective immersion

$$f: U \to V, \quad U \subseteq_{\mathsf{open}} M,$$

where

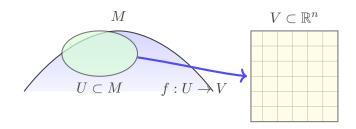
$$V\subseteq \begin{cases} \mathbb{R}^n, & \text{if } U\subseteq \mathsf{Int}(M),\\ [0,\infty)\times\mathbb{R}^{n-1}, & \text{if } U\cap\partial M\neq\varnothing. \end{cases}$$

Both f and its inverse f^{-1} are smooth. The components of f define the *local coordinates* on U.

MANCHESIER Local Charts on a Smooth Manifold

Intuition

Each chart provides a smooth "flattening" of a curved region of M into \mathbb{R}^n . Locally, the manifold looks like ordinary Euclidean space, even if globally it may curve or close on itself.



MANCHESTER Atlases and Transition Maps

Definition

An **atlas** on a smooth manifold M is a family of charts

$$\{(U_i, f_i) \mid i \in I\}, \quad \bigcup_{i \in I} U_i = M,$$

such that all transition maps

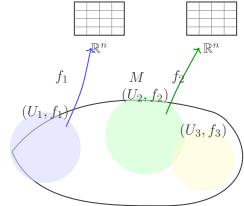
$$f_j \circ f_i^{-1} : f_i(U_i \cap U_j) \to f_j(U_i \cap U_j)$$

are smooth wherever the charts overlap. Different atlases that are compatible define the same smooth structure on M.

Atlases and Transition Maps

Geometric Idea

Each chart gives a local coordinate system, and their overlaps fit together smoothly. This collection allows calculus on ${\cal M}.$

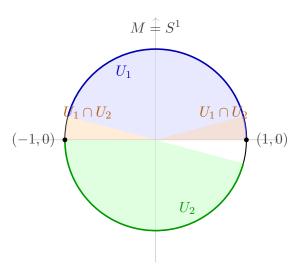


Construction

Let $M=S^1=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}$. Since $f(\phi)=(\cos\phi,\sin\phi)$ is 2π -periodic, no single chart covers all of S^1 . We define two overlapping charts:

$$\begin{split} &U_1 = S^1 \setminus \{(1,0)\}, \quad f_1(\phi) = (\cos \phi, \sin \phi), \quad \phi \in (0,2\pi), \\ &U_2 = S^1 \setminus \{(-1,0)\}, \quad f_2(\theta) = (\cos \theta, \sin \theta), \quad \theta \in (-\pi,\pi). \end{split}$$

On the overlap $U_1 \cap U_2$, the transition map $f_2^{-1} \circ f_1$ is smooth, hence $\{(U_1, f_1), (U_2, f_2)\}$ forms an atlas.



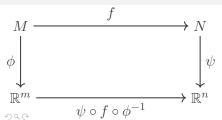
Smooth Maps between Manifolds

Definition

Let M,N be smooth manifolds with $\dim M=m$ and $\dim N=n$. A map $f:M\to N$ is **smooth** if for every chart (U,ϕ) on M and every chart (V,ψ) on N with $f(U)\subseteq V$, the composition

$$\psi \circ f \circ \phi^{-1} : \phi(U) \subseteq \mathbb{R}^m \to \mathbb{R}^n$$

is smooth in the classical sense. The space of all smooth maps is denoted $C^{\infty}(M,N)$. If $N=\mathbb{R}$, we write $\mathcal{F}(M):=C^{\infty}(M,\mathbb{R})$ — a commutative \mathbb{R} -algebra with unity.



Example

Let

$$M = S^{1} = \{(x, y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} = 1\},\$$

$$N = S^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1\},\$$

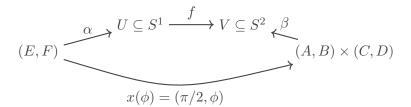
and define $f: M \to N$ by f(x,y) = (x,y,0). For charts:

$$\begin{split} \alpha:&(E,F)\to U,\quad \alpha(\phi)=(\cos\phi,\sin\phi),\\ \beta:&(A,B)\times(C,D)\to V,\quad \beta(\theta,\phi)=(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta). \end{split}$$

Then

$$\beta\Big(\frac{\pi}{2},\phi\Big) = (\cos\phi,\sin\phi,0) = f(\cos\phi,\sin\phi) = f(\alpha(\phi)),$$

showing the compatibility of local charts.



MANCHESIER Vector Fields on a Smooth Manifold

Definition

Let M be a smooth manifold. A **vector field** on M is an operator $X: \mathcal{F}(M) \to \mathcal{F}(M)$ satisfying:

- 1. $\forall f, g \in \mathcal{F}(M), X(fg) = X(f)g + fX(g)$ (Leibniz rule)
- 2. X is \mathbb{R} -linear.

Examples

- $M = \mathbb{R}$, $X = \frac{d}{dx}$, then $X(fg) = f'g + fg' (= \frac{\partial f}{\partial x}g + f\frac{\partial g}{\partial x})$.
- $M = \mathbb{R}^n$, $X = \sum_{i=1}^n X^i(x) \frac{\partial}{\partial x_i}$.

MANCHESIER The Module of Vector Fields

Theorem

Let M be a smooth manifold and $\mathcal{X}(M)$ the set of vector fields on M. Define scalar multiplication by

$$(fX)(g) = f(Xg), \qquad f, g \in \mathcal{F}(M), \ X \in \mathcal{X}(M).$$

Then $(\mathcal{X}(M), +, \cdot)$ is an $\mathcal{F}(M)$ –module.

Local Form

If (U, ϕ) is a chart with coordinates (x_1, \ldots, x_n) , then

$$\mathcal{X}(U)$$
 is a free $\mathcal{F}(U)$ -module with basis $\frac{\partial}{\partial x_1},\dots,\frac{\partial}{\partial x_n}$.

Every $X \in \mathcal{X}(U)$ can be expressed as

$$X = f_1 \frac{\partial}{\partial x_1} + \dots + f_n \frac{\partial}{\partial x_n}, \quad f_i \in \mathcal{F}(U).$$

MANCHESTER Example: Euler Vector Field in \mathbb{R}^2

Example

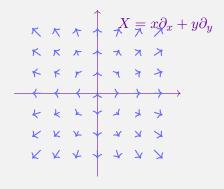
The **Euler vector field** on \mathbb{R}^2 is

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}.$$

For f(x, y), we have

$$Xf = x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}.$$

MANCHEMER Example: Euler Vector Field in \mathbb{R}^2



MANCHESTER Differential Forms

Definition

Let M be a smooth manifold. The space of differential forms is

$$\Omega^{\bullet}(M) := \Lambda^{\bullet}((\mathcal{X}(M))^*).$$

If dim M = n, in local coordinates (x_1, \ldots, x_n) , the basis of $\mathcal{X}(U)$ is $\partial/\partial x_i$, and the dual basis of $(\mathcal{X}(U))^* = \Omega^1(U)$ is dx_i , satisfying

$$dx_i \left(\frac{\partial}{\partial x_j} \right) = \delta_{ij}.$$

MANCHESTER Differential Forms

Examples

- \mathbb{R}^2 : $\Omega^0 M = \mathcal{F}(M)$, - $\Omega^1 M = \{ f_x dx + f_y dy \}$, - $\Omega^2 M = \{ g dx \wedge dy \}$.
- \bullet \mathbb{R}^3 :
 - $-\Omega^0 M = \mathcal{F}(M),$
 - $\Omega^{1}M = \{f_{1}dx + f_{2}dy + f_{3}dz\},\$
 - $\Omega^2 M = \{g_1 dy \wedge dz + g_2 dz \wedge dx + g_3 dx \wedge dy\},\$
 - $\Omega^3 M = \{ h \, dx \wedge dy \wedge dz \}.$

Definition

For a smooth manifold M, the exterior derivative is the graded operator

$$d: \Omega^{\bullet}(M) \to \Omega^{\bullet}(M), \quad d_p: \Omega^p(M) \to \Omega^{p+1}(M),$$

defined by:

1. For
$$f \in \Omega^0(M) = \mathcal{F}(M)$$
,

$$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n.$$

2. For
$$\omega, \eta \in \Omega^{\bullet}(M)$$
,

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^{\deg \omega} \omega \wedge d\eta.$$

Definition

3 $d_{p+1} \circ d_p = 0$ (cochain complex property).

$$\Omega^0(M) \xrightarrow{\quad d_0 \quad} \Omega^1(M) \xrightarrow{\quad d_1 \quad} \Omega^2(M) \xrightarrow{\quad d_2 \quad} \Omega^3(M)$$

MANCHESIER Example: Gradient and Curl in \mathbb{R}^2

Example

Let $M = \mathbb{R}^2$ and $f \in \Omega^0(M)$, then

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = (\nabla f)^{\flat}.$$

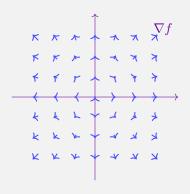
For $\omega = P dx + Q dy \in \Omega^1(M)$.

$$d\omega = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \wedge dy,$$

which corresponds to the curl of (P, Q).

MANCHESIER Example: Gradient and Curl in \mathbb{R}^2

Example



MANCHESTER Summary of Lecture

- Introduced diffeomorphisms and smooth manifolds.
- Described examples: disks, spheres, and general *n*-bricks as manifolds or manifolds with corners.
- Defined charts, local coordinates, and atlases with geometric illustrations.
- Demonstrated circle parametrization and Jacobian regularity for immersion.
- Defined smooth maps between manifolds using charts and commutative diagrams.
- Introduced vector fields as derivations and showed $\mathcal{X}(M)$ is an $\mathcal{F}(M)$ -module. Illustrated the Euler vector field on \mathbb{R}^2 geometrically.
- Defined differential forms, and exterior derivative. Showed $d_{p+1} \circ d_p = 0$, relating gradients and curls in \mathbb{R}^2 to Green's theorem.

