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Coordinate Patch in Polar Form

Example - Setting

Let U = (12 , 1]× (−π
6 ,

π
6 ) and define

f : U → R2, f(r, φ) = (r cosφ, r sinφ).

Then the image

V = Im f = {(r cosφ, r sinφ) | r ∈ (12 , 1], φ ∈ (−π
6 ,

π
6 )}

is an annular sector in R2.

V = Im f
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Exterior Derivative in R3

Definition

For a smooth manifold M = R3, the exterior derivative (ED)

dp : Ω
pM → Ωp+1M

satisfies dp+1 ◦ dp = 0 and the graded Leibniz rule.

Concrete Computations

Let f : R3 → R.

d0f =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

For a 1-form ω = fxdx+ fydy + fzdz,
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Example

Concrete Computations

d1ω = d(fx) ∧ dx+ d(fy) ∧ dy + d(fz) ∧ dz

= (fzy − fyz) dy ∧ dz + (fxz − fzx) dz ∧ dx+ (fyx − fxy) dx ∧ dy.

Thus d1ω corresponds to curl(fx, fy, fz).

For a 2-form

If η = fx dy ∧ dz + fy dz ∧ dx+ fz dx ∧ dy, then

d2η = (fx,x + fy,y + fz,z) dx ∧ dy ∧ dz,

which represents the divergence ∇·(fx, fy, fz).
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Differential Operators as ED

In R2

d0f = ∇f = (fx, fy),

d1(fxdx+ fydy) = (fyx − fxy)dx ∧ dy ⇒ scalar curl,

d1 ◦ d0 = 0 ⇒ curl(∇f) = 0.

F(R2) = Ω0

X (R2) = Ω1

Ω2(R2)

d0 = ∇

d1 = curl
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Differential Operators as ED

In R3

d0f = ∇f,

d1(fxdx+ fydy + fzdz) = curl(fx, fy, fz),

d2(fxdy ∧ dz + . . . ) = div(fx, fy, fz),

d2 ◦ d1 = 0 ⇒ ∇ · (∇×A) = 0.

F(R3) = Ω0

X (R3) = Ω1

Ω2(R3)

Ω3(R3)

d0 = ∇

d1 = curl

d2 = div
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Pullback of Differential Forms

Definition

Let M,N be smooth manifolds and f ∈ C∞(M,N). For a 1-form
ω ∈ Ω1N with local expression

ω = h1 dy1 + · · ·+ hn dyn, hi ∈ F(N),

the pullback f∗ω ∈ Ω1M is defined by

f∗ω = (h1 ◦ f) d(y1 ◦ f) + · · ·+ (hn ◦ f) d(yn ◦ f).

It extends naturally to exterior powers: f∗(ω ∧ η) = f∗ω ∧ f∗η.
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Pullback of Differential Forms

Example

Let M = N = R2, f(r, φ) = (r cosφ, r sinφ), and
ω = −y dx+ x dy. Then

f∗ω =− (r sinφ) d(r cosφ) + (r cosφ) d(r sinφ)

=− (r sinφ)(cosφdr − r sinφdφ)

+ (r cosφ)(sinφdr + r cosφdφ)

=r2 dφ.
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Compatibility of Pullback and ED

Theorem (Compatibility of Pullback and Exterior Derivative)

Let M,N be smooth manifolds and f ∈ C∞(M,N) a smooth
map. For each degree p ∈ N, the pullback operator

f∗
p : Ωp(N) → Ωp(M)

commutes with the exterior derivative, i.e.

dMp ◦ f∗
p = f∗

p+1 ◦ dNp .

In other words, taking the pullback of a form and then
differentiating gives the same result as differentiating first and

then taking the pullback:

f∗(dω) = d(f∗ω), ∀ω ∈ Ωp(N).

This shows that the exterior derivative is a natural operator with

respect to smooth maps between manifolds.
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Example

Ωp(N) Ωp+1(N)

Ωp(M) Ωp+1(M)

dNp

f∗
p

dMp

f∗
p+1

Example

Let M = N = R2, f(r, φ) = (r cosφ, r sinφ), ω = dx ∧ dy:

f∗dx = cosφdr − r sinφdφ,

f∗dy = sinφdr + r cosφdφ,

f∗(dx ∧ dy) = (f∗dx) ∧ (f∗dy) = r dr ∧ dφ.
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Trace of Differential Forms on Submani-

folds

Definition

Let M be a smooth manifold and N ⊆ M a submanifold with

inclusion map

ιN : N ↪→ M, ιN (x) = x.

The trace (restriction) of forms is the pullback

trN = ι∗N : Ω•M → Ω•N.

If N ⊆ ∂M , this represents the restriction of forms to the

boundary.
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Example

Example

Let M = R2, N = S1 ⊆ M , and ω = x dy − y dx. The inclusion
ιS1 : S1 → R2 gives

trS1 ω =(x dy − y dx)
∣∣
S1

=(r cosφ)(r cosφdφ)− (r sinφ)(−r sinφdφ) = r2dφ,

and for r = 1, trS1 ω = dφ.

N = S1 ⊂ M = R2

trω = dφ
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Orientation of Smooth Manifolds

Definition

Let M be a smooth manifold of dimension D. Since the space of

top–degree forms ΩDM is locally 1–dimensional, every element
ω ∈ ΩDM can be written locally as

ω = f dx1 ∧ dx2 ∧ · · · ∧ dxD, f ∈ F(M).

If f(x) 6= 0 for all x ∈ M , then ω is said to be a nonvanishing

D–form, and M is called orientable. A choice of such an ω (and

identifying all positive scalar multiples of ω as equivalent) defines

an orientation of M .

If M is connected and orientable, it admits exactly two possible

orientations, represented by ω and −ω. If M is disconnected,

each connected component may be oriented independently.
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Orientation of Smooth Manifolds

Intuitively, an orientation distinguishes between the two possible

“directions of measurement” on M : one associated with ω (posi-

tive orientation) and the other with −ω (negative orientation).

Example

RD is orientable with orientation

ω = dx1 ∧ dx2 ∧ · · · ∧ dxD, or its opposite − dx1 ∧ · · · ∧ dxD.

x1

x2

ω = dx1 ∧ dx2 gives positive orientation
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Outward-Pointing Vector Fields

Definition

Let M ⊆ RD be a D–dimensional manifold with boundary. A

vector field X ∈ X (M) is called outward-pointing on ∂M if near

every boundary point it locally points outside M .

Examples

• M = B1(0, 0) ⊆ R2, X = x ∂
∂x + y ∂

∂y ;

• M = B1(0, 0, 0) ⊆ R3, X = x ∂
∂x + y ∂

∂y + z ∂
∂z .

X = x∂x + y∂y outward pointing field
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The Induced Orientation on Boundaries

Theorem (Induced Orientation)

Let M be an orientable D–manifold with boundary S = ∂M and

orientation form ω ∈ ΩDM . If X ∈ X (M) is outward-pointing,
then

ωS = tr∂M
(
ιXω

)
∈ ΩD−1(S)

defines an orientation form on S, called the induced orientation.
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Example

Example 1: Half–Plane

Let M = [0,∞)× R, S = {0} × R,

X = − ∂

∂x
, ω = dx ∧ dy.

Then

ιX(dx ∧ dy) = ι−∂x(dx ∧ dy) = − ι∂x(dx ∧ dy) = − dy.

Thus ωS = −dy: the boundary inherits the leftward orientation.

x

y

∂M = {0} × R
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Induced Orientation in 2D and 3D Balls

Example 2: Disk in R2

M = B1(0, 0), ∂M = S1, X = x∂x + y∂y, ωM = dx ∧ dy.

Then ιXωM = ιx∂x+y∂y(dx ∧ dy) = x dy − y dx.

In polar coordinates x = r cosφ, y = r sinφ, so

x dy − y dx = r2 dφ ⇒ trS1(ιXωM ) = dφ.

Hence, S1 inherits counterclockwise orientation.

ωS = dφ
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3D Ball: Induced Orientation on the Sphere

Example 3: Ball in R3

M = B1(0, 0, 0), ∂M = S2,

X = x∂x + y∂y + z∂z, ωM = dx ∧ dy ∧ dz.

Then

ιXωM = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy.

In spherical coordinates

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, we have

trS2(ιXωM ) = r2 sin θ dθ ∧ dφ.

This 2–form defines the standard orientation of S2.
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Visualization

ωS = sin θ dθ ∧ dφ
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Spherical Coordinates

Spherical chart on S2 (radius 1)

Standard spherical coordinates

x = sin θ cosφ, y = sin θ sinφ, z = cos θ, θ ∈ (0, π), φ ∈ (0, 2π)

yield the induced orientation 2–form

ωS2 = sin θ dθ ∧ dφ.

Here dθ ∧ dφ is ordered so that (∂θ, ∂φ) agrees with the outward
normal orientation. sin θ is the Jacobian density (area scale
factor) of the chart; it vanishes only at the poles θ = 0, π, where
this chart is singular (coordinate singularity, not a geometric one).
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Visualization

φ

θ

∂φ

∂θ

North

South
ωS2 = sin θ dθ ∧ dφ; poles are chart singularities.
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Curvature Intuition on S2: Meridians vs

Parallels

Geodesics and geodesic curvature (unit sphere)

• Meridians (φ = const) and equator (θ = π/2) are great

circles ⇒ geodesics with geodesic curvature κg = 0.

• Parallels (θ = const 6= π/2) are not geodesics; their
geodesic curvature is κg = | cos θ| (nonzero away from the

equator).

• The area element (orientation form) is ωS2 = sin θ dθ ∧ dφ:
bands near the equator (θ ≈ π/2) have greater area density;
near the poles (θ → 0, π) the density vanishes.
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Visualization

equator (geodesic)

parallel θ = θ0, κg = | cos θ0|
meridian (geodesic)

area density ∝ sin θ

poles

Summary

The θ, φ chart encodes orientation and area via sin θ, is singular
at the poles, and separates geodesic directions (great circles)

from curved parallels (nonzero κg).
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Compact Manifolds and Integration

Definition

A manifold M ⊆ RD is compact if it is closed and bounded, i.e. it

lies entirely inside some finite ball BR(0).

Examples

• Closed D–bricks and their boundaries,

• Closed D–balls B1(0) and spheres SD−1.
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Integration

Smooth Oriented D–Manifolds

For compact, oriented M , integration is a linear map∫
M

: ΩDM → R

satisfying:

1. Additivity: If M = M1 ∪M2 with same orientation,∫
M

ω =

∫
M1

trM1 ω +

∫
M2

trM2 ω.

2. Change of Variables: If φ : M → N is an

orientation–preserving diffeomorphism,∫
N
ω =

∫
M

φ∗ω.
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Integration

Smooth Oriented D–Manifolds

3 Stokes–Cartan Theorem:∫
M

dω =

∫
∂M

tr∂M ω.

4 Zero–Dimensional Case: If M = {x} with orientation
ε = ±1,

∫
{x}

f = ε f(x).
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Example 1: (D = 1)

Statement: Newton–Leibniz Theorem

Let M = [a, b] ⊂ R, with boundary ∂M = {a, b} oriented as a 7→ b.
For f ∈ C∞(M),

ω = df = f ′(x) dx.

Then, by Stokes–Cartan:∫
[a,b]

df =

∫
∂[a,b]

tr f = f(b)− f(a).

a b

Orientation∫ b

a

f ′(x) dx = f(b)− f(a)
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Example 2: (D = 2, Curve in R2)

Statement: Gradient Theorem

Let γ : [a, b] → R2 be a smooth oriented 1–manifold with boundary
∂γ = {γ(a), γ(b)}, and f ∈ C∞(R2). The 1–form

ω = df =
∂f

∂x
dx+

∂f

∂y
dy.

Then ∫
γ
df =

∫
∂γ
tr∂γ f = f(γ(b))− f(γ(a)).

Thus, the gradient theorem is the 2–dimensional instance of
Stokes–Cartan.

29



Visualization

x

y

γ

∫
γ
df =

∫
∂γ
tr f
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Example 3: (D = 2)

Statement: Green’s Theorem

Let M ⊂ R2 be a compact oriented 2–manifold with boundary ∂M
(positively oriented). For a 1–form ω = P dx+Qdy,

dω =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

Then by Stokes–Cartan,∫
M

dω =

∫
∂M

tr∂M ω.

This is Green’s theorem in exterior–form form: the flux of dω
across M equals the trace of ω on ∂M .

∫
M

dω =
∫
∂M

tr∂M ω
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Example 4: D = 3

Statement (Stokes–Cartan for a 1–manifold in R3)

Let γ : [a, b] → R3 be a smooth oriented curve (a compact

1–manifold M = γ([a, b]) with ∂M = {γ(a), γ(b)} and orientation
from a to b). For f ∈ F(R3) = C∞(R3), the 1–form

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

Then, by Stokes–Cartan on the 1–manifold M ,∫
γ
df =

∫
∂γ
tr∂γ f = f(γ(b))− f(γ(a))

(i.e. the line integral of the exact form df along the space curve

equals the trace of f on the boundary points).
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Visualization

x

z

y

γ(a)

γ(b)

orientation

∫
γ

df = f(γ(b))− f(γ(a))
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Example 5: (D = 3)

Statement: Kelvin–Stokes Theorem

Let M ⊂ R3 be a smooth oriented 2–manifold with boundary ∂M .

For a 1–form ω = Adx+B dy + C dz,

dω =

(
∂C

∂y
− ∂B

∂z

)
dy∧dz+

(
∂A

∂z
− ∂C

∂x

)
dz∧dx+

(
∂B

∂x
− ∂A

∂y

)
dx∧dy.

Then by Stokes–Cartan:∫
M

dω =

∫
∂M

tr∂M ω.

This is the Kelvin–Stokes theorem in exterior form notation.

n

∫
M

dω =
∫
∂M

tr∂M ω
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Example 6: (D = 3)

Statement: Gauss Divergence Theorem

Let M ⊂ R3 be a compact oriented 3–manifold with boundary
∂M . For a 2–form

ω = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy,

we have

dω = (∂xP + ∂yQ+ ∂zR) dx ∧ dy ∧ dz.

Then, by Stokes–Cartan:∫
M

dω =

∫
∂M

tr∂M ω.

This is the Gauss (Divergence) theorem in the language of

differential forms.
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Visualization

outward orientation

∫
M

dω =
∫
∂M

tr∂M ω
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Summary: Stokes–Cartan in all Dim.

Unified Framework

For any compact oriented smooth D–manifold M with boundary

∂M : ∫
M

dω =

∫
∂M

tr∂M ω.

All classical theorems follow as special cases:

Dim. Differential Form Result

1 df Newton–Leibniz theorem

2 df on γ Gradient theorem

2 d(P dx+Qdy) Green’s theorem

3 d(Adx+B dy + C dz) Kelvin–Stokes theorem

3 d(P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy) Gauss divergence theorem
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Part I: Lecture Summary

Summary

• The exterior derivative dp : Ω
pM → Ωp+1M generalizes grad,

curl, and divergence.

• In R2: d0 = grad, d1 = scalar curl; in R3: d0 = grad, d1 = curl,
d2 = div.

• Pullback f∗ transfers forms from N to M compatibly:

d ◦ f∗ = f∗ ◦ d.
• Trace trN = ι∗N restricts forms to submanifolds or

boundaries.

• These constructions make differential forms

coordinate-independent tools for calculus on manifolds.
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Part II: Lecture Summary

Summary

• Orientation is given by a nonvanishing top–degree form

ω ∈ ΩDM .

• Outward vector fields define induced orientation on ∂M via

ωS = tr∂M (ιXω).

• Integration of differential forms generalizes classical calculus

results to manifolds.

• Stokes–Cartan theorem unifies Newton–Leibniz, Green,

Kelvin–Stokes, and Gauss divergence theorems.

• Compact oriented manifolds admit consistent integration

respecting additivity and diffeomorphism invariance.
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Thanks
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