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Integration on Manifolds

Definition

Let (M, g) be a compact oriented D–dimensional Riemannian

manifold.

1. The measure of M (length, area, or volume for D = 1, 2, 3) is

µ(M) =

∫
M
vol(M,g) > 0.

2. The Riemann integral of a smooth function f ∈ F(M) is

I(f) =

∫
M

f vol(M,g).

2



Integration on Manifolds

Definition

For D = 1, M = [a, b], this reduces to the classical integral

I(f) =

∫ b

a
f(x) dx.

3 The inner product of two p–forms ω, η ∈ Ωp(M) with
p ∈ {0, 1, . . . , D}, is

〈ω, η〉p :=I(gp(ω, η)).

=

∫
M

g∗p(ω, η) vol(M,g).
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Example: Area on the Sphere S2
r

Setup

Let D = 2, M = S2
r = {(x, y, z) ∈ R3 | x2 + y2 + z2 = r2} with the

induced orientation and metric from R3. In spherical coordinates:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

θ ∈ (0, π), φ ∈ (0, 2π).

The induced metric is g = r2(dθ2 + sin2 θ dφ2), and the volume
form is

vol(M,g) = r2 sin θ dθ ∧ dφ.

4



Example

Computation of Area of a Spherical Quadrilateral

For θ ∈ [θ1, θ2] and φ ∈ [φ1, φ2],

A =

∫
[θ1,θ2]×[φ1,φ2]

r2 sin θ dθ ∧ dφ

= r2
∫ φ2

φ1

∫ θ2

θ1

sin θ dθ dφ

= r2(φ2 − φ1)(cos θ1 − cos θ2).

This agrees with the Frobenius theorem, ensuring the integration

of a 2–form depends only on the orientation of M .

5



Visualization

φ

θ
θ1, θ2

φ1, φ2
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Codifferential Operator Manifolds

Definition

Let (M, g) be a compact oriented D–dimensional Riemannian

manifold, and p ∈ {1, 2, . . . , D}. Denote by
◦
Ω
p

(M) = {ω ∈ Ωp(M) | tr∂M ω = 0} the space of p–forms
vanishing on the boundary.

The codifferential

d∗p :
◦
Ω
p

(M) −→
◦
Ω
p−1

(M)

is the adjoint of dp−1 restricted to
◦
Ω
p−1

(M):

〈d∗pω, η〉p−1 = 〈ω, dp−1η〉p, ∀ω ∈
◦
Ω
p

(M), η ∈
◦
Ω
p−1

(M).
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Expression via Hodge Star

Equivalent Expression

For any p ∈ {1, . . . , D},

d∗D−p ◦ ?p = (−1)p+1 ?p+1 ◦dp,
or equivalently: d∗D−p = (−1)p+1 ?p+1 ◦dp ◦ ?−1

p

=(−1)p+1+p(D−p) ?p+1 ◦dp ◦ ?D−p.

Ωp(M) Ωp+1(M)

ΩD−p(M) ΩD−p−1(M)

dp

?p ?p+1

(−1)p+1d∗D−p 8



Codifferential: General Identity

Setup and Symbols

(M, g): oriented D-dimensional Riemannian manifold.

Ωp(M) : p-forms on M,

dp : Ω
p(M) → Ωp+1(M).

?p : Ω
p(M) → ΩD−p(M) (Hodge star),

?−1
p = (−1)p(D−p) ?D−p .

Inner product: g∗p(ω, η) volg = ω ∧ ?pη,

〈ω, η〉p =
∫
M

g∗p(ω, η) volg.
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Adjoint of d

Codifferential

For p ∈ {0, 1, . . . , D − 1}, the adjoint

d∗D−p = (−1) p+1+p(D−p) ?p+1 ◦ dp ◦ ?D−p,

d∗D−p : ΩD−p(M) −→ ΩD−p−1(M).

f ∈ Ω0(M) = F(M) (smooth scalar function).

ω ∈ Ω1(M) (one-form; via g corresponds to a vector field by ω = X[).

η ∈ Ω2(M) (two-form; in D = 3, η = ?1Y
[

encodes an oriented flux field).
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Specialization to D = 3: Explicit d and d∗

Exterior derivatives in D = 3

d0 : Ω
0(M) → Ω1(M), d0(f) = df,

d1 : Ω
1(M) → Ω2(M), d1(ω) = dω,

d2 : Ω
2(M) → Ω3(M), d2(η) = dη,

d3 : Ω
3(M) → Ω4(M) = 0, d3 = 0.

Adjoints from the general identity

Using d∗D−p = (−1) p+1+p(D−p) ?p+1 dp ?D−p with D = 3:

for p = 2 : d∗1 = (−1) 2+1+2(1) ?3 d2 ?1

= (−1)5 ?3 d2 ?1

= − ?3 d2 ?1,
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Specialization to D = 3: Explicit d and d∗

Adjoints from the general identity

d∗1 : Ω
1(M) → Ω0(M) (“negative divergence” under the standard

identifications).

for p = 1 : d∗2 = (−1) 1+1+1(2) ?2 d1 ?2

= (−1)4 ?2 d1 ?2

= ?2 d1 ?2

d∗2 : Ω
2(M) → Ω1(M) (“curl” under the standard identifications).

for p = 0 : d∗3 = (−1) 0+1+0 ?1 d0 ?3

= − ?1 d0 ?3,

d∗3 : Ω
3(M) → Ω2(M) (co-gradient of a density 3-form).
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Interpretation in R3 and Schematic

Vector–calculus dictionary (with this sign convention)

d0  gradient (∇f),

d1  curl (∇×A),

d2  divergence (∇ · F ),

d∗1 = − ?3 d2?1  − div(A),

d∗2 = ?2d1?2  ∇× F,

d∗3 = − ?1 d0 ?3 .

Ω0 Ω1 Ω2 Ω3
d0 d1 d2

d∗3 = − ?1 d0?3d∗2 = ?2d1?2d∗1 = − ?3 d2?1

grad curl div

− div curl co-grad
13



Domains/Codomains

D = 3

f ∈ Ω0 d0−→ df ∈ Ω1,

ω ∈ Ω1 d1−→ dω ∈ Ω2,

η ∈ Ω2 d2−→ dη ∈ Ω3,

α ∈ Ω1 d∗1−→ d∗1α ∈ Ω0,

β ∈ Ω2 d∗2−→ d∗2β ∈ Ω1,

γ ∈ Ω3 d∗3−→ d∗3γ ∈ Ω2.
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Setup and Field Quantities

Geometric–Physical Setting

Let D ∈ N. Let (M, g) be a compact, oriented D–dimensional

Riemannian manifold with nonempty boundary ∂M (spatial

domain). Let t0 ∈ R and I = [t0,∞) (time interval). We study the

transport of an extensive quantity (mass, charge, energy, …) in

M over I.

Differential–Form Fields (time–dependent)

Amount (density D–form): Q ∈ C∞(I,ΩDM
)
so that

∫
V Q(t) is

the amount in V ⊆ M .

Flow rate (flux (D−1)–form): q ∈ C∞(I,ΩD−1M
)
, so that

∫
S q(t)

is net flow through SD−1.

Internal production (source D–form): f ∈ C∞(I,ΩDM
)
, so that∫

V f(t) is total production in V.
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Flux Across an Internal Interface

M

S

V−
V+

qV−→V+

qV+→V−

qS := qV+→V− − qV−→V+

Time–Integrated Net Flux Through S

For [t1, t2] ⊂ I,

Net flux on [t1, t2] :

∫ t2

t1

(∫
S
q(t)

)
dt.
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Continuity Law: Integral and Differential

Forms

Integral Balance on Any Subregion V ⊆ M

For [t1, t2] ⊂ I,∫
V
Q(t2)−

∫
V
Q(t1)︸ ︷︷ ︸

amount change in V

=

∫ t2

t1

(∫
V
f(t)

)
dt︸ ︷︷ ︸

internal production

−
∫ t2

t1

(∫
∂V

q(t)
)
dt︸ ︷︷ ︸

total outflow through ∂V

.

Using Stokes–Cartan on ∂V ,∫
∂V

q(t) =

∫
V
dD−1q(t).
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Continuity Law

Integral Balance on Any Subregion V ⊆ M

Assuming smoothness, differentiate under the integral in time:∫
V

∂Q

∂t
(t) =

∫
V

(
f(t)− dD−1q(t)

)
.

Localization (“Dropping the Integrals”)

Because the equality holds for all subregions V and for all t, the
integrands must agree pointwise:

∂Q

∂t
= f − dD−1q on M × I.

This is the differential–form version of the continuity law.
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Boundary Sign Convention and Stokes

on Moving Slices

Orientation and Signs

With the outward orientation on ∂V ,∫
∂V

q =

∫
V
dD−1q =⇒ outflow (through ∂V ) =

∫
V
dD−1q.

Thus,

∂Q

∂t
= f − dD−1q

encodes “time rate of change = production − outflow”.
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Visualization

V
outward normal, ∂V
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Correspondence with Vector Calculus

A Common Identification

In D = 3, write Q = ρ̃ dV (amount density ρ̃ times 3–volume
form), and represent a vector flux field F̃ via the flux 2–form
q = ιF̃ vol. Then

∂Q

∂t
= f − d2q ⇐⇒ ∂ρ̃

∂t
dV = f̃ dV − (∇ · F̃ ) dV

⇐⇒ ∂ρ̃

∂t
= f̃ −∇ · F̃ .

flux field F̃ , q = ιF̃ vol 21



Neumann Boundary and Prescribed Flux

Boundary Portion and Data

Let ΓN ⊆ ∂M be a (D−1)–dimensional smooth submanifold
(Neumann boundary). A prescribed flux (i.e. given as boundary

input) is a (D−1)–form

gN ∈ C∞(I,ΩD−1ΓN

)
with physical unit [X T−1],

interpreted so that
∫
S gN (t) equals the net amount per unit time

crossing S ⊂ ΓN at time t.

Neumann Boundary Condition (NBC)

The total flux q ∈ C∞(I,ΩD−1M
)
satisfies

trΓN
q = gN on ΓN × I.
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Neumann Boundary and Prescribed Flux

Boundary Portion and Data

∂M

ΓN
outward flux q
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Potential, Diffusion, and Advection

Potential and Total Flux Split

Let u ∈ C∞(I,Ω0M
)
be the potential (units [Y ]), e.g. temperature,

concentration, pressure, or electric potential. Split the total flux as

q = qD + qA,

where qD is the diffusive part and qA is the advective part.

Diffusive (constitutive) law — isotropic & anisotropic

With du ∈ Ω1M and Hodge star ? : Ω1→ΩD−1,

(isotropic) qD = −κ ? (du), κ ∈ C∞(M), κ > 0;

(anisotropic) qD = − ?
(
κ̃(du)

)
, κ̃ : Ω1M → Ω1M

(SPD (1, 1)–tensor).

24



Potential, Diffusion, and Advection

Diffusive (constitutive) law — isotropic & anisotropic

Equivalently, define κ : ΩD−1M → ΩD−1M by the identity

?D−1 ◦ κ̃ = κ ◦ ?1 ⇒ qD = −κ ? (du).

M

S

ũ−
ũ+

q|S ∼ ũ+ − ũ−
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Advection

Advective Flux via Volume Flux Form

Let ṽ be a velocity vector field; its volume flux form is

v := ιṽ vol ∈ ΩD−1M (units [LDT−1]).

If Q ∈ ΩDM is the amount D–form, then

qA = (?Q) v (scalar density ? Q × volume flux form v) .
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Capacity

Volumetric Capacity

Relate amount and potential by a capacity coefficient:

π̃ : Ω0M → Ω0M, Q = ?
(
π̃ u

)
.

Equivalently, ∃π : ΩDM → ΩDM with π ◦ ?0 = ?0 ◦ π̃ ,

⇒ Q = π(?u).

Hence

∂Q

∂t
= π

(
?
∂u

∂t

)
= ?

(
π̃
∂u

∂t

)
.
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Boundary Partition and Data

Dirichlet vs. Neumann

Let ΓD,ΓN ⊆ ∂M be relatively open, disjoint, with

ΓD ∪ ΓN = ∂M, dim(ΓD ∩ ΓN ) ≤ D − 2.

Dirichlet boundary condition (DBC):

trΓD
u = uD, uD ∈ C∞(I,Ω0ΓD).

Neumann boundary condition (NBC):

trΓN
q = gN , gN ∈ C∞(I,ΩD−1ΓN ).
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Visualization

ΓN

ΓD

∂M = ΓD ∪ ΓN
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Governing Equations (Summary)

Bulk Law (Continuity)

∂Q

∂t
= f − dD−1q in M × I.

Constitutive Relations

Capacity: Q = ?(π̃ u) = π(?u), π ◦ ?0 = ?0 ◦ π̃.
Diffusion: qD = − ?

(
κ̃(du)

)
= −κ ? (du), ?D−1 ◦ κ̃ = κ ◦ ?1.

Advection: qA = (?Q) v, v = ιṽvol ∈ ΩD−1M.
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Governing Equations (Summary)

Boundary Conditions and Unknowns

Unknowns: u ∈ C∞(I,Ω0M), Q ∈ C∞(I,ΩDM),

q ∈ C∞(I,ΩD−1M).

Dirichlet on ΓD : trΓD
u = uD.

Neumann on ΓN : trΓN
q = gN .

Total flux: q = qD + qA.
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Primal Strong Model

Continuity and Constitutive Content (recall)

Continuity:
∂Q

∂t
= f − dD−1q,

Amount–potential link (capacity): Q = ?
(
π̃ u

)(
equivalently π̃ u = ?DQ

)
,

Flux split: q = qD + qA,

Diffusion (anisotropic): qD = − ?
(
κ̃ du

)(
isotropic: qD = −κ ? du

)
,

Advection: qA = (?Q) v, v = ιṽvol ∈ ΩD−1M.
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Primal Strong Model

Substitute Q, q in terms of u

∂

∂t

(
?
(
π̃ u

))
= f − dD−1

(
− ?(κ̃ du) + (?Q) v

)
= f + dD−1 ? (κ̃ du) − dD−1

(
(?Q) v

)
= f + dD−1 ? (κ̃ du) − dD−1

(
(? ? (π̃u)) v

)
,

where in the last line we used Q = ?(π̃u).
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Primal Strong Model

Primal strong equation for u

∂

∂t

(
? (π̃u)

)
− dD−1 ? (κ̃ du) + dD−1

(
(? ? (π̃u)) v

)
= f

In isotropic diffusion (κ̃ = κ id), the second term is dD−1(κ ? du).
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Equivalent Form Using π̃u = ?DQ

Express everything through Q and then back to u

π̃u = ?DQ ⇐⇒ ?(π̃u) = ? ?D Q = σD Q,

where σD = ±1 depends on the metric signature and D (in

Euclidean D–RM, σD = +1). Hence
∂

∂t

(
? (π̃u)

)
= σD

∂Q

∂t
.

Using the continuity equation ∂Q
∂t = f − dD−1q and

q = − ? (κ̃du) + (?Q)v, we get

σD
∂Q

∂t
= f − dD−1

(
− ?(κ̃du) + (?Q)v

)
= f + dD−1 ? (κ̃du)− dD−1

(
(?Q)v

)
.

Replacing Q by ?(π̃u) recovers the primal equation in u from the

previous slide.
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Manufactured Steady Problem

Steady assumptions and model

Let ∂u
∂t = 0, hence ∂Q

∂t = 0, and v = 0. The continuity law reduces

to

0 = f − dD−1q =⇒ f = dD−1q.

With pure diffusion q = qD = −κ ? du (isotropic, constant κ > 0),

f = dD−1

(
− κ ? du

)
= −κ dD−1

(
? du

)
.
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Manufactured Steady Problem

Choose M = [0, 1]3 ⊂ R3, standard Euclidean metric

Let u(x, y, z) = x2 + y2 + z2 and κ = 2 (constant).
du = 2x dx+ 2y dy + 2z dz,

?dx = dy ∧ dz, ?dy = dz ∧ dx, ?dz = dx ∧ dy,

?du = 2x dy ∧ dz + 2y dz ∧ dx + 2z dx ∧ dy,

q = −κ ? du = − 2
(
2x dy ∧ dz + 2y dz ∧ dx+ 2z dx ∧ dy

)
= − 4x dy ∧ dz − 4y dz ∧ dx − 4z dx ∧ dy.

Finally,
f = dq = −κ d(?du) = − 2

(
∆u

)
dx ∧ dy ∧ dz = − 2 · 6 dx ∧ dy ∧ dz

= − 12 dx ∧ dy ∧ dz.

Thus the manufactured source is the constant 3–form
f = −12 dx ∧ dy ∧ dz on M .
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Flux Sketch (steady diffusion in a cube)

M = [0, 1]3

q = −κ ? du
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Summary

Main Concepts

• µ(M) =
∫
M vol(M,g) gives measure (length/area/volume) of

(M, g).

• 〈ω, η〉p =
∫
M g∗p(ω, η)vol(M,g) defines inner product on Ωp(M).

• Codifferential d∗ is the adjoint of d:

〈d∗pω, η〉p−1 = 〈ω, dp−1η〉p.

• Relationship with Hodge star:

d∗D−p ◦ ?p = (−1)p+1 ?p+1 ◦dp.

• For D = 3: (d0, d1, d2) correspond to (∇,∇×,∇·) and (d∗1, d
∗
2)

to their adjoints.
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Summary

Main Concepts

• Neumann data prescribes the flux (D−1)–form on ΓN ,

Dirichlet data prescribes the potential on ΓD.

• Diffusion: qD = − ? (κ̃ du) (or −κ ? du); Advection:
qA = (?Q) v with v = ιṽvol.

• Capacity links amount and potential: Q = ?(π̃u).

• Continuity in forms:
∂Q

∂t
= f − dD−1q, closed by the

constitutive laws and boundary conditions.
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Summary

Main Concepts

• Amount Q(t) ∈ ΩDM , flux q(t) ∈ ΩD−1M , production

f(t) ∈ ΩDM model transport on (M, g).

• Integral balance on any V ⊆ M and Stokes–Cartan yield the

local continuity law

∂Q

∂t
= f − dD−1q.

• In D = 3, with Q = ρ̃ dV and q = ιF̃ vol, this becomes

∂ρ̃

∂t
= f̃ −∇ · F̃ .
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Summary

Main Concepts

• Primal strong model (exterior–calculus form):

∂

∂t

(
? (π̃u)

)
− dD−1 ? (κ̃du) + dD−1

(
(? ? (π̃u))v

)
= f.

• Steady, no advection: f = dq = −κ d(?du); in R3 this is

f = −κ∆u vol.

• Manufactured 3D example with u = x2 + y2 + z2, κ = 2:
q = −4x dy ∧ dz − 4y dz ∧ dx− 4z dx ∧ dy,
f = −12 dx ∧ dy ∧ dz.
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Global Picture

Ω0

Ω1

.

.

.

ΩD−1

ΩD

d0

dD−1

d∗
1

· · ·

d∗
D

ΩD

ΩD−1

.

.

.

Ω1

Ω0

dD−1

d0

d∗
D

d∗
1

?0

?1

?D−1

?D

Codifferential:
d∗
D−p

= (−1)p+1+p(D−p) ?p+1 ◦dp ◦
?D−p

Inner product: g∗p(ω, η) vol = ω ∧ ?pη

Hodge involution:
?D−p ◦ ?p = (−1)p(D−p) idΩp

u ∈ Ω0

potential
q̃ ∈ Ω1

(aux. 1-form)

q ∈ ΩD−1

flow rate

Q ∈ ΩD

amount density
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Thanks
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