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Part I

Algebra

1 Commutative rings with unity

Definition 1.1. Let R be a set, 0, 1 ∈ R, − : R → R +, ∗ : R × R → R. We say that (R, 0, 1,−,+, ∗) is a
commutative ring with unity (we will simply say that R is commutative ring with unity when operations are
clear from the context) if the following equalities are satisfied for all a, b, c ∈ R:

a+ (b+ c) = (a+ b) + c (addition is associative), (1.1a)

a+ 0 = 0 + a = a (0 is neutral with respect to addition), (1.1b)

a+ (−a) = (−a) + a = 0 (negation is the inverse of addition), (1.1c)

a+ b = b+ a (addition is commutative), (1.1d)

a ∗ (b+ c) = a ∗ b+ a ∗ c (multiplication is left-distributive over addition), (1.1e)

(a+ b) ∗ c = a ∗ c+ b ∗ c (multiplication is right-distributive over addition), (1.1f)

a ∗ (b ∗ c) = (a ∗ b) ∗ c (multiplication is associative), (1.1g)

a ∗ 1 = 1 ∗ a = a (1 is neutral with respect to multiplication), (1.1h)

a ∗ b = b ∗ a (multiplication is commutative). (1.1i)

We will often omit multiplication sign and write ab instead of a ∗ b.

Example 1.2. The following are examples and counterexamples of commutative rings with unity.

1. The number sets Z, Q, R, C of respectively integers, rationals, reals, and complex numbers are commutative
rings with unity with respect to the standard arithmetic operations. The set N of natural numbers is not a
ring since it lacks negation.

2. For any positive integer n, the set Zn of integers modulo n is a commutative ring with unity with respect to
addition and multiplication modulo n. (This is the original inspiration behind the word “ring” as its elements
can be arranged in a loop, like the hours on a clock.)

3. Let X be a set, R be a commmutative ring with unity. Then the set of functions RX := {f | f : X → R} is a
commutative ring with unity ring with respect to pointwise operations: if f, g : X → R, x ∈ X, we define

0RX (x) :=0R, (1.2a)

1RX (x) :=1R, (1.2b)

(−RXf)(x) :=−R (f(x)), (1.2c)

(f +RX g)(x) :=f(x) +R g(x), (1.2d)

(f ∗RX g)(x) :=f(x) ∗R g(x). (1.2e)

We will drop subscripts and overload ring operations on RX .

Definition 1.3. Let R be a commutative ring with unity, S be a subset of R. We say that S is a subring with
unity of R if S is a commutative ring with unity with operations on S being the restrictions on S of the operations
in R.

Proposition 1.4. Let R be a commutative ring with unity, S be a subset of R. Then S is a subring with unity if
contains 1 and is closed under negation, addition, and multiplication, i.e., for any a, b ∈ R,

1 ∈ R, −a ∈ R, a+ b ∈ R, ab ∈ R. (1.3)
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Example 1.5. The following are examples of subrings.

1. The number sets Z, Q, R, C form a chain of subrings (any of them is a subring with unity of the next one).

2. For any n ∈ N, n ≥ 2, the set nZ := {nx | x ∈ Z} is a subring of Z that has no unity.

Definition 1.6. Let R be a commutative ring with unity. We say that R is a field if it has at least two elements
and any nonzero element has a multiplicative inverse, i.e.,

∀a ∈ R \ {0} ∃b ∈ R, a ∗ b = 1. (1.4)

Example 1.7. The following are examples and counterexamples of fields.

1. Among the number sets, Q, R, C are fields, Z is not a field.

2. Let n be an integer. Then Zn is a field if and only if n is a prime number.

3. Let X be a nonempty set, R be a field. Then the set of functions RX := {f | f : X → R} is not a field except
in the trivial case of X having one element. Indeed, let X has at least two elements, and take a function
f ∈ RX that is zero at a point x0 but nonzero at some other point x1 (so it is not identically zero). Then f
is not invertible since for any g ∈ RX ,

(f ∗ g)(x0) = f(x0) ∗ g(x0) = 0 ∗ g(x0) = 0 ̸= 1. (1.5)

Remark 1.8. The reason for introducing commutative rings with unity instead of working with fields is that, as
explained above, sets of functions RX are not fields. We will encounter them a lot when working with algebraic
structures on smooth manifolds and meshes, predominantly modules over subrings of RX .

2 Modules over commutative rings with unity

Definition 2.1. Let (R, 0R, 1R,−R,+R, ∗R) be a commutative ring with unity, V be a set, 0 ∈ V , − : V → V ,
+: V × V → V , ∗ : R × V → V . We say that (V, 0,−,+, ∗) is a module over R if the following equalities are
satisfied for all u, v, w ∈ V , λ, µ ∈ R:

u+ (v + w) = (u+ v) + w (addition is associative), (2.1a)

v + 0 = 0 + v = v (0 is neutral with respect to addition), (2.1b)

v + (−v) = (−v) + v = 0 (negation is the inverse of addition), (2.1c)

u+ v = v + u (addition is commutative), (2.1d)

λ ∗ (u+ v) = λ ∗ u+ λ ∗ v (scalar multiplication is distributive over vector addition), (2.1e)

(λ+R µ) ∗ v = λ ∗ v + µ ∗ v (scalar multiplication is distributive over scalar addition), (2.1f)

λ ∗ (µ ∗ v) = (λ ∗R µ) ∗ v (scalar multiplication is “associative”), (2.1g)

1R ∗ v = v (1R is neutral with respect to scalar multiplication). (2.1h)

We will often omit multiplication sign and write λv instead of λ ∗ v. The elements of V are called vectors, while
those of R are called scalars.

Remark 2.2. When the space of scalars is a field, a module becomes a vector space. Hence, modules generalise
vector spaces.

Example 2.3. Let R be a commutative ring with unity. The following are examples of modules over R.

1. For any n ∈ N, the space Rn is a module over R under component-wise addition and multiplication with a
scalar.

2. For any m,n ∈ N, the space Mm×n(R) of m×n matrices with elements in R is a module over R under under
component-wise addition and multiplication with a scalar.

3. For any set X, the ring RX can also be considered as a module over R with pointwise addition and multipli-
cation with a scalar. It generalises the previous two cases when X = {1, ..., n} and X = {1, ...,m}× {1, ..., n}
respectively.
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Definition 2.4. Let R be a commutative ring with unity, V be a module over R. S ⊂ V . We say that the S is
linearly independent if for any n ∈ N, λ1, ..., λn ∈ R, v1, ..., vn ∈ V ,

λ1v1 + ...+ λnvn = 0 ⇒ λ1 = ... = λn = 0. (2.2)

We say that the set S is linearly dependent if there exist n ∈ N, λ1, ..., λn ∈ R \ {0}, v1, ..., vn ∈ V such that

λ1v1 + ...+ λnvn = 0. (2.3)

Definition 2.5. Let R be a commutative ring with unity, V be a module over R. S ⊂ V . We say that S spans
V if for any v ∈ V there exist n ∈ N, λ1, ..., λn ∈ R, v1, ..., vn ∈ V such that

v = λ1v1 + ...+ λnvn. (2.4)

Definition 2.6. Let R be a commutative ring with unity, V be a module over R. S ⊂ V . We say that S is a basis
of V if it is linearly independent and spans V .

Definition 2.7. Let R be a commutative ring with unity, V be a module over R. We say that V is free if it
admits a basis.

Example 2.8. The module of tuples and matrices over a commutative ring with unity are free. A set of modules
that do not have a basis consists of Zn as modules over Z for any n ≥ 2. Indeed, any vector v ∈ Zn is linearly
independent since nv = 0.

3 Algebras over rings

Definition 3.1. Let R be a commutative ring with unity, A be an R-module, µ : R×R→ R. We say that (A,µ)
is an R-algebra (or algebra over R) if for all a, b, c ∈ A, λ ∈ R:

µ(a+ b, c) = µ(a, c) + µ(b, c)(multiplication on A is left-distributive), (3.1a)

µ(a, b+ c) = µ(a, b) + µ(a, c)(multiplication on A is right-distributive), (3.1b)

µ(λ ∗ a, b) = λ ∗ µ(a, b) (µ respects multiplication of scalar on the left), (3.1c)

µ(a, λ ∗ b) = λ ∗ µ(a, b) (µ respects multiplication of scalar on the right). (3.1d)

Definition 3.2. Let R be a commutative ring with unity, (A,µ) be an R-algebra.

1. We say that (A,µ) is associative algebra if for any a, b, c ∈ A, µ(a, µ(b, c)) = µ(µ(a, b), c). In other words,
(A,µ) is a ring.

2. We say that (A,µ) is commutative algebra if for any a, b, c ∈ A, µ(a, b) = µ(b, a).

3. Let 1 ∈ R. We say that (A,µ, 1) is unital algebra if for any a,∈ A, µ(a, 1) = µ(1, a) = a. (1 is the unit
element or unity.)

4. We say that (A,µ) is alternating algebra if for any a ∈ A, µ(a, a) = 0.

5. We say that (A,µ) is anti-commutative algebra if for any a, b ∈ A, µ(a, b) = −µ(b, a).

Proposition 3.3. Let R be a commutative ring with unity, Let (A,µ) be an algebra.

� If A is alternating, then A is anti-commutative.

� If A is anti-commutative and the ring R has the property

∀x ∈ R, x+ x = 0 ⇒ x = 0, (3.2)

then A is alternating.

Proof. First, let A be alternating. Then for any a, b ∈ A,

0 = µ(a+ b, a+ b) = µ(a, a) + µ(a, b) + µ(b, a) + µ(b, b) = µ(a, b) + µ(b, a) ⇒ µ(b, a) = −µ(a, b). (3.3)
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Conversely, let A be anti-commutative. Taking b = a in the definition leads to

µ(a, a) = −µ(a, a) ⇒ µ(a, a) + µ(a, a) = 0. (3.4)

Under the assumption of Equation (3.2), we conclude that µ(a, a) = 0.

4 Lie algebras

Definition 4.1. Let R be a commutative ring with unity, V be an R-algebra with multiplication operation [·, ·].
We say that V is a Lie algebra if [·, ·] is alternating and satisfies the Jacobi identity: for any x, y, z ∈ V ,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (4.1)

Proposition 4.2. Let R be a commutative ring with unity, V be an associative algebra over R. Define the
commutator[·, ·] : V × V → V as follows: for any x, y ∈ V ,

[x, y] := xy − yx. (4.2)

Then (V, [·, ·]) is a Lie algebra. In particular, when X is a module over R, V := EndRX is a Lie algebra with Lie
bracket given by

[φ,ψ] := φ ◦ ψ − ψ ◦ φ, φ, ψ ∈ EndRX. (4.3)

Proof. Let x, y, z ∈ A. [·, ·] is alternating since [x, x] = xx− xx = 0. Next, we calculate

[x, [y, z]] = [x, yz − zy] = x(yz − zy)− (yz − zy)x = xyz − xzy − yzx+ zyx. (4.4)

Similarly, [y, [z, x]] = yzx− yxz− zxy+xzy and [z, [x, y]] = zxy− zyx−xyz+ yxz. We can see that each of the six
permutations of (x, y, z) in products occurs twice with opposite signs, which means that their sum is zero. Hence,
the Jacobi identity is also satisfied.

Definition 4.3. Let R be a commutative ring with unity, (V, [·, ·]V ) and (W, [·, ·]W ) be Lie algebras over R,
φ ∈ HomR(V,W ). We say that φ is a Lie algebra homomorphism if for any u, v ∈ V ,

φ([u, v]V ) = [φu, φv]W . (4.5)

Definition 4.4. R be a commutative ring with unity, V be a Lie algebra over R. Define the adjoint map

adj : V → EndRV, adjxy := [x, y], x, y ∈ V. (4.6)

Proposition 4.5. R be a commutative ring with unity, V be a Lie algebra over R. Then the adjoint map is a
homorphism of Lie algebras, i.e., for any x, y ∈ V ,

adj[x,y] = [adjx, adjy] := adjx ◦ adjy − adjy ◦ adjx. (4.7)

Proof. Let x, y, z ∈ V . Then

[adjx, adjy]z = (adjx ◦ adjy − adjy ◦ adjx)z = [x, [y, z]]− [y, [x, z]]

= [x, [y, z]] + [y, [z, x]] = −[z, [x, y]] = [[x, y], z] = adj[x,y]z.
(4.8)

5 Derivations on algebras

Definition 5.1. Let R be a commutative ring with unity, A be an R-algebra, D ∈ HomR(A,A). We say that D
is a derivation if for any a, b ∈ A the Leibniz rule (or the product rule) holds:

D(a ∗ b) = (Da) ∗ b+ a ∗ (Db). (5.1)

By DerR(A) we will denote the set of all derivations on A over R.
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Example 5.2 (Derivative of a single variable function is derivation). Let R = R, A = C∞(R) be the space of
infinitely differentiable functions, D be the derivative operator, i.e., Df = f ′ for f ∈ A. Then D is a derivation.

Example 5.3. Let R be a commutative ring with unity, V be a Lie algebra over R. Then the adjoint homomorphism
adj : V → EndR(V ) induces for each x ∈ V a derivation adjx : V → V . Indeed, take x, y, z ∈ A. Then

adjx[y, z] = [x, [y, z]] = −[z, [x, y]]− [y, [z, x]] = [[x, y], z] + [y, [x, z]] = [adjxy, z] + [y, adjxz]. (5.2)

Proposition 5.4. Let R be a commutative ring with unity, A be a unital, commutative, and associative R-algebra.
Then DerR(A) is an A-module under pointwise addition and multiplication with a scalar.

Proof. Let D,D1, D2 ∈ DerR(A). Then D1 +D2 is a homomorphism from module theory. To prove it satisfies the
Leibniz rule, let a, b ∈ A. Then

(D1+D2)(a∗b) = D1(a∗b)+D2(a∗b) = D1a∗b+a∗D1b+D2a∗b+a∗D2b = (D1+D2)a∗b+a∗(D1+D2)b. (5.3)

Further, let a ∈ A. Then (a ·D)(b) := a ∗Db for any b ∈ B. It is trivial to check it it is a homomorphism. To check
it is a derivation, let b, c ∈ A. Then

(a ·D)(b ∗ c) = a ∗D(b ∗ c) = a ∗ (Db ∗ c+ b ∗Dc) = (a ∗Db) ∗ c+ b ∗ (a ∗Dc) = (a ·D)b ∗ c+ b ∗ (a ·D)c. (5.4)

Hence, DerR(A) is an A-module.

Proposition 5.5. Let R be a commutative ring with unity, A be a unital, commutative, and associative R-algebra,
X,Y ∈ DerR(A). Then X ◦ Y − Y ◦X ∈ DerR(A).

Proof. Linearity of [X,Y ] follows from module theory. Hence, we only need to show it satisfies the Leibniz rule.
Let f, g ∈ A. Then

X(Y (fg)) = X((Y f) ∗ g + f ∗ (Y g)) = (X(Y f)) ∗ g + (Y f) ∗ (Xg) + (Xf) ∗ (Y g) + f ∗ (X(Y g)). (5.5)

Analogously,

Y (X(fg)) = (Y (Xf)) ∗ g + (Xf) ∗ (Y g) + (Y f) ∗ (Xg) + f ∗ (Y (Xg)). (5.6)

Hence,

[X,Y ](fg) = (X(Y f)) ∗ g+f ∗ (X(Y g))−(Y (Xf)) ∗ g−f ∗ (Y (Xg)) = ([X,Y ]f) ∗ g + f ∗ ([X,Y ]g). (5.7)

Corollary 5.6. Let R be a commutative ring with unity, A be a unital, commutative, and associative R-algebra.
Then DerR(A) is a Lie algebra with Lie bracket given by

[X,Y ] := X ◦ Y − Y ◦X, X, Y ∈ DerR(A). (5.8)

Proposition 5.7. Let R be a commutative ring with unity, n be positive integer. Consider the set Rn as a ring
with pointwise addition and multiplication, and as an R-algebra with pointwise scalar multiplication. Then

DerR(R
n) = 0. (5.9)

Proof. Let D ∈ DerR(R
n). Consider the standard basis (e1, ..., en) of Rn and let the matrix of D in the basis be

A, i.e., for 1 ≤ i, j ≤ n,

Dei =

n∑
j=1

Aj,iej . (5.10)

Let 1 ≤ i ≤ n. Then, since mltiplication in Rn is commutative,

Dei = D(ei ∗ ei) = Dei ∗ ei + ei ∗Dei = 2Dei ∗ ei, (5.11)

which translates to
n∑

j=1

Aj,iej = 2

n∑
j=1

Aj,iej ∗ ei = 2Ai,iei. (5.12)
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For j ̸= i this leads to Aj,i = 0, while for j = i it leads to Ai,i = 2Ai,i ⇒ Ai,i = 0. Therefore, for all i, j ∈ {1, ..., n},
Ai,j = 0. Hence, A = 0, which means that D = 0.

6 Exterior algebra

Definition 6.1. Let R be a commutative ring with unity, V be a module over R. The exterior algebra of V ,
Λ•V is the smallest associative algebra with unity containing V as a subspace and satisfying the alternating rule:
for every v ∈ V , if ∧ is the multiplication on Λ•V , then

v ∧ v = 0. (6.1)

Proposition 6.2. Let R be a commutative ring with unity, V be a module over R, v, w ∈ V . Then on Λ•V ,

w ∧ v = −v ∧ w. (6.2)

Proof. By the alternating rule,

0 = (v + w) ∧ (v + w) = v ∧ v + v ∧ w + w ∧ v + w ∧ w = 0 + v ∧ w + w ∧ v + 0 ⇒ w ∧ v = −v ∧ w. (6.3)

Proposition 6.3. Let R be a commutative ring with unity, D ∈ N, V be a free module over R of dimension D,
e0, ..., eD−1 be a basis of V . Then the 2D-element set S(e),

S(e) :=
{
ei0 ∧ ... ∧ eip−1 | p ∈ {0, ..., D}, 0 ≤ i0 < ... < ip−1 ≤ D − 1

}
(6.4)

(for p = 0 the empty wedge product is defined to be 1) forms a basis of Λ•V .

Remark 6.4. Let R be a commutative ring with unity, D ∈ N, V be a free module over R of dimension D,
e0, ..., eD−1 be a basis of V . The elements of S(e) which are wedge products of p vectors are called p-vectors.
Obviously, there are

(
D
p

)
of them. Denote by ΛpV the space spanned by those p vectors (it does not depend on the

basis of e – in fact ΛpV is the space spanned by linear combinations of wedge products of arbitrary vectors). Then
we have the module decomposition

Λ•V :=

D∑
p=0

ΛpV. (6.5)

This decompositions turns Λ•V into a graded algebra, that is for each p, q ∈ N,

ωp ∈ ΛpV, ηq ∈ ΛqV ⇒ ωp ∧ ηq ∈ Λp+qV (6.6)

(here we define Λr = 0 for r > D).

Proposition 6.5. Let R be a commutative ring with unity, D ∈ N, V be a free module over R of dimension D,
v0, ..., vD−1 ∈ V . Then (v0, ..., vD−1) form a basis of V if and only if

v0 ∧ ... ∧ vD−1 (6.7)

forms a basis of the 1-dimensional module ΛDV .

Proposition 6.6. Let R be a commutative ring with unity, D ∈ N, V be a free module over R of dimension D,
e0, ..., eD−1 be a basis of V , v0, ..., vD−1 ∈ V such that for j = 0, ..., D − 1,

vj =

D−1∑
i=0

eiAi,j (6.8)

(in matrix form, (v0, ..., vD−1) = (e0, ..., eD−1)A). Then

v0 ∧ ... ∧ vD−1 = (detA)e0 ∧ ... ∧ eD−1. (6.9)

As a consequence, the matrix A is a change of basis matrix if and only if detA is an invertible element of R (a
nonzero element when R is a field).
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Notation 6.7. Let R be a commutative ring with unity and V be a module over R. Denote by V ∗ the dual space
of V :

V ∗ := Hom(V,R). (6.10)

Proposition 6.8. Let R be a commutative ring with unity, V be a a finite-dimensional R-module, p ∈ N. Then the
R-modules (ΛpV )∗ and Λp(V ∗) are canonically isomorphic. The isomorphism is the unique linear map f : Λp(V ∗) →
(ΛpV )∗ such that for any ω0, ..., ωp−1 ∈ V ∗ and any v0, ..., vp−1 ∈ V ,

f(ω0 ∧ ... ∧ ωp−1)(v0 ∧ ... ∧ vp−1) = det(ωi(vj))
p−1
i,j=0. (6.11)

Corollary 6.9. Let R be a commutative ring with unity, V be a a finite-dimensional R-module. Then (Λ•V )∗ ≡
Λ•(V ∗).

Notation 6.10. Let V be an 1-dimensional real vector space, v ∈ V , w ∈ V \ {0}. By v/w denote the unique
λ ∈ R such that v = λw. (The uniqueness follows from the fact that the nonzero vector w forms a basis of V .)

Definition 6.11. LetD ∈ N, V be a real vector space of dimensionD, v0, ..., vD−1 ∈ V . Consider the 1-dimensional
space ΛDV . Define an equivalence relation on the nonzero elements of ΛDV as follows: for any v, w ∈ ΛDV \ {0},

v ≡ w ⇔ v/w > 0. (6.12)

This equivalence relation partitions ΛDV \ {0} into two equivalence classes (corresponding to positive and negative
elements with respect to a choice). An orientation on V is a choice of 1 of the equivalence classes on ΛDV .
Equivalently, we will also specify orientation by choosing an element on ΛD(V ∗) ≡ (ΛDV )∗.
An oriented vector space is a vector space with a chosen orientation.

Notation 6.12. Let D ∈ N, p ∈ {0, ..., D}. By CD
p we will denote the set of all ordered lists with p elements

without repetition whose elements are from the set {0, ..., D − 1}.

Notation 6.13. Let D ∈ N, R be a commutative ring with unity, V be a D-dimensional R-moDule, p ∈ {0, ..., d},
Ip := (i0, ..., ip−1) ∈ CD

p , v0, ..., vD−1 ∈ V . By vIp we will denote the p-vector

vIp := vi0 ∧ ... ∧ vip−1
. (6.13)

Proposition 6.14. Let D ∈ N, R be a commutative ring with unity, V be a D-dimensional R-module, e• :=
(e0, ..., eD−1) be a basis of V , v• := (v0, ..., vD−1) be a set of vectors, a ∈ MD×D(R) be the transformation matrix
from e• to v•, p ∈ {0, ..., D}, Ip ∈ CD

p . Then

vIp =
∑

Jp∈CD
p

det
(
a|Ip×Jp

)
eJp . (6.14)

7 Inner products and Hodge star

Definition 7.1. Let V be a vector space over R. An inner product on V is a function g : V × V → R that is:

1. bilinear, i.e., for all λ, µ ∈ R, u, v, w ∈ V :

g(λu+ µv,w) = λg(u,w) + µg(v, w), g(w, λu+ µv) = λg(w, u) + µg(w, v); (7.1)

2. symmetric, i.e., for all u, v ∈ V ,

g(u, v) = g(v, u); (7.2)

3. positive definite: for all v ∈ V \ {0},

g(v, v) > 0. (7.3)

If g is an inner product on V , the pair (V, g) is called an real inner product space.
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Proposition 7.2. Let (V, g) be a finite-dimensional real inner product space. Define the map g̃ : V → V ∗ as
follows: for any v ∈ V ,

g̃(v) := (w ∈ V 7→ g(v, w)). (7.4)

Then g̃ is an isomorphism.

Definition 7.3. Let D ∈ N, (V, g) be a real inner product space of dimension D, e = {e0, ..., eD−1} be a basis of V .
We say that e is an orthogonal basis if any two disjoint elements are orthogonal, i.e., for all i, j ∈ {0, ..., D − 1},
if i ̸= j, then

g(ei, ej) = 0. (7.5)

The basis e is called orthonormal, if it is orthogonal and for any i ∈ {0, ..., D − 1},

g(ei, ei) = 1. (7.6)

An equivalent way of saying that e is orthonormal is by using the Kronecker delta symbol: for all i, j ∈ {0, ..., D−1},

g(ei, ej) = δi,j :=

{
0, if i ̸= j

1, if i = j
. (7.7)

Definition 7.4. Let d ∈ N, (V, g) be a real inner product space of dimension d, p ∈ {0, ..., d}. Define the inner
product on p-vectors Λpg : ΛpV × ΛpV → R as follows: for any v0, ..., vp−1, w0, ..., wp−1 ∈ V ,

(Λpg)(v0 ∧ ... ∧ vp−1, w0 ∧ ... ∧ wp−1) := det(g(vi, wj))
p−1
i,j=0 (7.8)

(in other words, on simple p-vectors Λpg is constructed using the Gram determinant). For arbitrary p-vectors,
expand the above definition by bilinearity.
We define the exterior algebra inner product

Λ•g : Λ•V × Λ•V → R (7.9)

as follows: for p, q ∈ N, ωp ∈ ΛpV, ηq ∈ ΛqV ,

(Λg)(ωp, ηq) :=

{
(Λpg)(ωp, ηq), p = q

0, p ̸= q
. (7.10)

Definition 7.5. Let d ∈ N, (V, g) be an oriented real inner product space of dimension d. The volume d-vector
on V is the unique element of ΛdV which has norm 1 and is in the same oriented class as the chosen orientation.

Remark 7.6. On a non-oriented real inner product space V of dimension d ∈ N there are exactly two elements
ω, η ∈ ΛdV ∗ that have norm 1 (they are opposite to one another, i.e., ω = −η) and so are candidates for a volume
d-vector. Choosing one of them is equivalent to a choice of orientation on V .

Definition 7.7. Let D ∈ N, (V, g) be an oriented real inner product space of dimension D, vol be the volume
D-vector on ΛDV , p ∈ N. The Hodge star operator on p-vectors ⋆p is defined as the unique operator

⋆p : Λ
pV → ΛD−pV (7.11)

such that for any ω ∈ ΛpV, η ∈ ΛD−pV ,

(ΛD−pg)(⋆pω, η) vol = ω ∧ η. (7.12)

The Hodge star operator ⋆ is the direct sum of all ⋆p for p = 0, ..., D.

Example 7.8. Consider V = R2 with the standard basis e = (e0, e1), inner product g making e orthonormal,
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volume 2-vector vol := e0 ∧ e1. Then

⋆0 1 = e0 ∧ e1 = vol, (7.13a)

⋆1 e0 = e1, (7.13b)

⋆1 e1 = −e0, (7.13c)

⋆2 e0 ∧ e1 = ⋆2 vol = 1. (7.13d)

Proposition 7.9 (Alternative formula for Hodge star). Let D ∈ N, (V, g) be an oriented real inner product space
of dimension D, vol be the volume D-vector on ΛDV , p ∈ N. Define the operator ⋆̃p as the unique operator

⋆̃p : Λ
pV → ΛD−pV (7.14)

such that for any ω, η ∈ ΛpV ,

ω ∧ ⋆̃pη = (Λpg)(ω, η) vol . (7.15)

Then ⋆̃p = ⋆p.

Proposition 7.10. Let D ∈ N (V, g) be an oriented real inner product space of dimension D, p ∈ N. Then

⋆D−p ◦ ⋆p = (−1)p(D−p) idΛpV . (7.16)

8 Chain complexes

Definition 8.1. Let R be a commutative ring with unity, {Ap}∞p=−∞ be a set of R-modules, {∂p : Ap → Ap−1}∞p=−∞
be linear maps. Define A• :=

⊕∞
p=−∞Ap and ∂ : A• → A• to be the unique R-linear map such that for any p ∈ Z

and any a ∈ Ap, ∂a = ∂pa. We say that (A•, ∂) is a chain complex if ∂2 = 0. Equivalently, for any p ∈ Z,
∂p ◦ ∂p+1 = 0.

Definition 8.2. Let (A•, ∂
A) and (B•, ∂

B) be chain complexes. Their tensor product

(C•, ∂
C) := (A•, ∂

A)⊗ (B•, ∂
B) (8.1)

is defined as follows: for any r ∈ Z,

Cr =

∞⊕
p=−∞

Ap ⊗Br−p, (8.2)

while the map ∂C is defined for basis elements a⊗ b ∈ Ap ⊗Bq ⊆ Cp+q,

∂C(a⊗ b) := ∂Aa⊗ b+ (−1)pa⊗ ∂Bb. (8.3)

Proposition 8.3. Let (A•, ∂
A) and (B•, ∂

B) be chain complexes,

(C•, ∂
C) = (A•, ∂

A)⊗ (B•, ∂
B) (8.4)

be their tensor product (Definition 8.2). Then (C•, ∂
C) is a chain complex.

9 Differential graded algebras

Definition 9.1. Let R be a commutative ring with unity, {Ap}∞p=−∞ be a set of R-modules, {δp : Ap → Ap+1}∞p=−∞
be linear maps, {⌣p,q : A

p × Aq → Ap+q}∞p,q=−∞ be bilinear maps. Define A• :=
⊕∞

p=−∞Ap and δ : A• → A• to
be the unique R-linear map such that for any p ∈ Z and any π ∈ Ap, δπ = δpπ, ⌣ : A•×A• → A• to be the unique
R-bilinear map such that for any p, q ∈ Z and any (π, ρ) ∈ Ap × Aq, π ⌣ ρ = π ⌣p,q ρ. We say that (A•, δ,⌣) is
a differential graded algebra if δ2 = 0 and for any p ∈ Z, π ∈ Ap, ρ ∈ A•,

δ(π ⌣ ρ) = δπ ⌣ ρ+ (−1)pπ ⌣ δρ. (9.1)
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Definition 9.2. Let (A•, δA,⌣A) and (B•, δB ,⌣B) be differential graded algebras. Their tensor product

(C•, δC ,⌣C) := (A•, δA,⌣A)⊗ (B•, δB ,⌣B) (9.2)

is defined as follows: for any r ∈ Z,

Cr =

∞⊕
p=−∞

Ap ⊗Br−p, (9.3)

the map δC is defined for basis elements a⊗ b ∈ Ap ⊗Bq ⊆ Cp+q as

δC(a⊗ b) := δAa⊗ b+ (−1)pa⊗ δBb, (9.4)

while the product is defined for basis elements a⊗ b ∈ Ap ⊗Bq ⊆ Cp+q and a′ ⊗ b′ ∈ Ap′ ⊗Bq′ ⊆ Cp′+q′ as

(a⊗ b)⌣C (a′ ⊗ b′) := (−1)qp
′
(a ⌣A a′)⊗ (b ⌣B b′). (9.5)

Proposition 9.3. Let (A•, δA,⌣A) and (B•, δB ,⌣B) be differential graded algebras,

(C•, δC ,⌣C) := (A•, δA,⌣A)⊗ (B•, δB ,⌣B) (9.6)

be their tensor product (Definition 9.2). Then (C•, δC ,⌣C) is a differential graded algebra.

Part II

Smooth manifolds

10 Vector fields on manifolds

Definition 10.1. Let M be a smooth manifold. A vector field on M is a derivation on the R-algebra FM of
smooth functions. In other words, a vector field is an R-linear map X : FM → FM such that for any f, g ∈ FM
the Leibniz rule is satisfied:

X(fg) = f · (Xg) + (Xf) · g (10.1)

(here · is multiplication of functions).
The space of all vector fields onM is denoted by XM . It is an R-algebra under pointwise addition and multiplication
with scalar. It is also an (FM)-algebra with the following multiplication with a function: for any f ∈ XM and
X ∈ FM , fX ∈ FM is defined to act on g ∈ FM by

(fX)g := f · (Xg). (10.2)

Proposition 10.2. Let M be a smooth manifold, X,Y ∈ XM . Then the commutator

[X,Y ] := X ◦ Y − Y ◦X (10.3)

is also a vector field.

Proof. We will show that [X,Y ] satisfies the Leibniz rule. Let f, g ∈ FM . Then

X(Y (fg)) = X(Y f · g + f · Y g) = X(Y f) · g + Y f ·Xg +Xf · Y g + f ·X(Y g). (10.4)

Analogously,

Y (X(fg)) = Y (Xf) · g +Xf · Y g + Y f ·Xg + f · Y (Xg). (10.5)

Hence,

[X,Y ](fg) = X(Y (fg))−Y (X(fg)) = X(Y f)·g+f ·X(Y g)−Y (Xf)·g−f ·Y (Xg) = [X,Y ]f ·g+f ·[X,Y ]g. (10.6)

Linearity of [X,Y ] is obvious. Hence, [X,Y ] is a vector field.
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Discussion 10.3. Let M be a smooth manifold of dimension D, X,Y ∈ XM , (U,φ) be a chart on M with local
coordinates x1, ..., xD. Let X and Y be represented in local coordinates as

X =

D∑
p=1

fp
∂

∂xp
, Y =

D∑
p=1

gp
∂

∂xp
. (10.7)

We are going to derive expressions for [X,Y ]. We have

X ◦ Y =

D∑
p,q=1

fp
∂

∂xp
◦ (gq ∂

∂xq
) =

D∑
p,q=1

fp
∂gq

∂xp
∂

∂xq
+

D∑
p,q=1

fpgq
∂2

∂xp∂xq
. (10.8)

Analogously,

Y ◦X =

D∑
p,q=1

gp
∂fq

∂xp
∂

∂xq
+

D∑
p,q=1

fpgq
∂2

∂xq∂xp
. (10.9)

Because of the symmetry of second derivatives, the second order terms in [X,Y ] cancel. Hence,

[X,Y ] =

D∑
p,q=1

(fp
∂gq

∂xp
− gp

∂fq

∂xp
)
∂

∂xq
. (10.10)

This can also be written as

[X,Y ] =

D∑
q=1

(Xgq − Y fq)
∂

∂xq
. (10.11)

Part III

Meshes

11 Meshes

Definition 11.1. Let d be a natural number. A mesh of dimension d is a finite set of polytopes of dimension at
most d such that:

� if X is an element of M , then all subfaces of X are also in M ;

� the intersection of elements of M is a finite (possibly empty) union of elements of M .

For an integer p ∈ [0, d], the set of elements (polytopes) of dimension p in M is denoted by Mp.

12 Relative orientation on meshes

Theorem 12.1. Let d ∈ N, M be a mesh of dimension d, p ∈ {2, ..., d}, ap ∈ Mp, cp−2 ∈ Mp−2, ap ≻ cp−2. Then
there exist exactly two (p− 1)-cells bp−1, b

′
p−1 ∈Mp−1 that are between ap cp−2, i.e.,

ap ≻ bp−1 ≻ cp−2 and ap ≻ b′′p−1 ≻ cp−2. (12.1)

Definition 12.2. Let d ∈ N, M be a mesh of dimension d, R be a commutative ring with unity. A family of maps

{εp : Mp ×Mp−1 → {−1, 0, 1}}dp=1 (12.2)

is called a relative orientation on M if the following conditions are satisfied:

1. for any p ∈ {1, ..., d}, ap ∈Mp, bp−1 ∈Mp−1,

ap ≻ bp−1 ⇔ ε(ap, bp−1) ̸= 0; (12.3)

2. for any edge a1 with endpoints the nodes b0 and c0,

ε(a1, b0) + ε(a1, c0) = 0; (12.4)
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3. for any p ∈ {2, ..., d}, ap ∈ Mp, cp−2 ∈ Mp−2 with ap ≻ cp−2, let bp−1 and b′p−1 be the two cells between ap
and cp−2. Then

ε(ap, bp−1)ε(bp−1, cp−2) + ε(ap, b
′
p−1)ε(b

′
p−1, cp−2) = 0. (12.5)

Remark 12.3. Note that the last condition in the above definition can be written as∑
bp−1∈(cp−2,ap)

ε(ap, bp−1)ε(bp−1, cp−2) = 0. (12.6)

Theorem 12.4. Let d ∈ N, M be a mesh of dimension d, R be a commutative ring with unity. Then there exists
a relative orientation on M .

13 Chains and boundary operator on meshes

Definition 13.1. Let d ∈ N, M be a mesh of dimension d, p ∈ N, p ∈ [0, d], R be a commutative ring with unity
(for instance, R = R). The space Cp(M ;R) of p-chains on M with coefficients in R is the free R-module (vector
space over R when R is a field, e.g., when R = R) generated by Mp:

Cp(M ;R) := FreeR(Mp). (13.1)

In other words, the elements of Cp(M ;R) are the formal linear combinations of cells in Mp in coefficients in R. An
element cp of Cp(M ;R) has the form

cp := λ0c(p,h0) + ...+ λn−1c(p, hn−1), (13.2)

where for i = 0, ..., n− 1, λi ∈ R and c(p, hi) ∈Mp.

Definition 13.2. Let d ∈ N, M be a mesh of dimension d, R be a commutative ring with unity. The space
C•(M ;R) of all chains on M is the direct sum

C•(M ;R) :=

d⊕
p=0

Cp(M ;R). (13.3)

Definition 13.3. Let d ∈ N, M be a mesh of dimension d, R be a commutative ring with unity, ε be a relative
orientation on M , p ∈ {1, ..., d}, The boundary operator on p-cells ∂p is the map

∂p : Cp(M ;R) → Cp−1(M ;R) (13.4)

defined for a basis cochain cp ∈Mp by

∂pap :=
∑

bp−1⪯ap

ε(ap, bp−1)bp−1. (13.5)

and extended on CpM by linearity.
The full boundary operator ∂ on M ,

∂ : C•(M ;R) → C•(M ;R), (13.6)

is the sum of all boundary operators on p-cells. In other words, for any p ∈ {1, ..., d} σp ∈ Cp(M ;R),

∂σp := ∂pσp, (13.7)

and ∂ is extended by linearity on all cells (it returns zero when acting on 0-cells).

Proposition 13.4. Let d ∈ N, M be a mesh of dimension d, R be a commutative ring with unity, ε be a relative
orientation on M . Then the algebra (C•M,∂) is a chain complex, i.e.,

∂2 = 0. (13.8)
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Proof. It is enough to prove that for any p ∈ {0, ..., d}, cp ∈Md,

∂2cp = 0. (13.9)

The proposition is trivially true for p = 0 and p = 1 because ∂0 = 0. Assume that p ≥ 2. Then

∂2ap = ∂p−1(∂pap)

= ∂p−1

 ∑
bp−1≺ap

ε(ap, bp−1)bp−1


=

∑
bp−1≺ap

∑
cp−2≺bp−1

ε(ap, bp−1)ε(bp−1, cp−2)cp−2

=
∑

cp−2≺ap

 ∑
bp−1∈(cp−2,ap)

ε(ap, bp−1)ε(bp−1, cp−2)

 cp−2

= 0

(13.10)

(the last equation follows from the last condition in the definition of relative orientation).

Proposition 13.5. Let d ∈ N, M be a mesh of dimension d, R be a commutative ring with unity, ε and ε′ be a
relative orientations on M with corresponding boundary operators ∂ and ∂′ respectively. Then

(C•(M ;R), ∂) ∼= (C•(M ;R), ∂′) (13.11)

(∼= is understood as isomorphism of chain complexes).

Remark 13.6. The above proposition says that the boundary operator is essentially unique, i.e., up to isomorphism
it does not depend on the chosen relative orientation. This motivates the notion of “the boundary operator” on
a mesh. Nevertheless, this does not exclude special choices of relative orientations in some particular cases like
compatibly orientable meshes or regular grids.

14 Cochains and coboundary operator on meshes

Definition 14.1. Let d ∈ N, M be a mesh of dimensions d, R be a commutative ring with unity. The space
C•(M ;R) of cochains is the dual to the space of chains, i.e.,

C•(M ;R) := (C•(M ;R))∗ = HomR(C•(M ;R), R) (14.1)

If p ∈ {0, .., d} then the space of p-cochains Cp(M ;R) is

Cp(M ;R) := (Cp(M ;R))∗ = HomR(Cp(M ;R), R). (14.2)

We have the decomposition

C•(M ;R) =

d⊕
p=0

Cp(M ;R). (14.3)

Definition 14.2. Let d ∈ N, M be a mesh of dimension d, R be a commutative ring with unity, ∂ be a boundary
operator on M . Then the corresponding coboundary operator on M δ is the dual of ∂, i.e.,

δ = ∂∗ : C•(M ;R) → C•(M ;R). (14.4)

In other words, for any cochain π• ∈ C•(M ;R) and any chain ρ• ∈ C•(M ;R),

(δπ•)ρ• := π•(∂ρ•). (14.5)

If p ∈ {0, ..., d− 1}, the coboundary operator on p-cochains δp is defined as the dual of ∂p+1. In other words,

δp = ∂∗p+1 : C
p(M ;R) → Cp+1(M ;R). (14.6)

If πp ∈ Cp(M ;R), ρp+1 ∈ Cp+1(M ;R), then

(δpπ
p)ρp+1 = πp(∂p+1ρp+1). (14.7)
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Proposition 14.3. Let d ∈ N, M be a mesh of dimension d, R be a commutative ring with unity, ∂ be a boundary
operator on M , δ be the corresponding coboundary operator. Then

(C•(M ;R), δ) (14.8)

is a cochain complex.

Proof. Let π• ∈ C•(M ;R), ρ• ∈ C•(M ;R). Then

(δ2π•)ρ• = (δπ•)(∂ρ•) = π•(∂(∂ρ•)) = π•(0) = 0. (14.9)

Since π• and ρ• were arbitrary,

δ2 = 0. (14.10)

15 Combinatorial differential forms and Forman subdivision

Definition 15.1. Let D ∈ N, M be a mesh of dimension D, 0 ≤ pf ≤ D. A combinatorial differential form
of dimension pf (called pf -form for short) on M is a linear map

ω : C•M → C•M (15.1)

such that for any p ∈ [pf , D] and any cp ∈Mp, ω(cp) is a linear combination of the (p− pf )-subfaces of cp.
The space of all pf -forms on M is denoted by ΩpfM . The space of all combinatorial differential forms is the direct
sum

Ω•M :=

D⊕
pf=0

ΩpfM. (15.2)

Definition 15.2. Let d ∈ N, M be a mesh of dimension d ∂ be a boundary operator on M . The discrete
differential on M is the linear map

D : Ω• → Ω• (15.3)

which maps a p-form ω to a (p+ 1)-form by the formula

Dω := ω ◦ ∂ − (−1)p∂ ◦ ω. (15.4)

Proposition 15.3. Let d ∈ N, M be a mesh of dimension d, ∂ be a boundary operator on Mm D be the discrete
differential on M . Then (Ω•M,D) is a cochain complex, i.e.,

D2 = 0. (15.5)

Proof. A straightforward computation using the fact that ∂2 = 0. Indeed, let ω ∈ ΩpM . Then

D2(ω) = D(Dω)

= D(ω ◦ ∂ − (−1)p∂ ◦ ω)
= ω ◦ ∂ ◦ ∂ − (−1)p+1∂ ◦ ω ◦ ∂ − (−1)p∂ ◦ ω ◦ ∂ − (−1)p(−1)p+1∂ ◦ ∂ ◦ ω
= 0− (−1)p+1∂ ◦ ω ◦ ∂ + (−1)p+1∂ ◦ ω ◦ ∂ + 0

= 0.

(15.6)

Definition 15.4. Let d ∈ N,M be a mesh of dimension d. Consider a mesh K constructed as follows. The nodes of
K are the centroids of the cells of M . (In general, the topology of K can always be constructed while the geometry
is tricky. For simplicity we may assume that all the cells of M are convex, although for non-simplicial or non-brick
meshes in dimensions 3 and above the resulting mesh may contain non-flat polytopes.)
For pf ∈ [0, d], a pf -cell of K is constructed as follows. Let p ∈ [pf , d], s = p− pf consider two cells

c(p, i) ⪰ c(s, l) (15.7)
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Then a pf -cell is such a pair (c(p, i), c(s, l)). If qf ∈ [0, pf ], q ∈ [qf , d], r = q − qf ,

c(q, j) ⪰ c(r, k), (15.8)

then (c(q, j), c(r, k)) is a subface of (c(p, i), c(s, l)) if

c(p, i) ⪰ c(q, j) ⪰ c(r, k) ⪰ c(s, l). (15.9)

The constructed space is a mesh which we call the Forman subdivision.

Example 15.5. Some examples with planar meshes and their Forman subdivisions are presented in Figure 1.

(a) Pentagon (b) Forman subdivision of a pentagon

(c) polar mesh (d) Forman subdivision of a polar mesh

(e) Irregular mesh (produced by Neper) (f) Forman subdivision of an irregular mesh

Figure 1: Examples of meshes and their Forman subdivisions

Definition 15.6. Let d ∈ N, M be a mesh of dimension d, K be the Forman subdivision of M , εM be the relative
orientation on M . We construct the relative orientation εK as follows. Let pf ∈ [1, d], p ∈ [pf , d], s = p − pf ,
cK(pf , if ) be a pf -cell on K,

cK(pf , if ) = (c(p, i), c(s, l)) for some c(p, i) ∈ CpM and c(s, l) ∈ CsM. (15.10)
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Let cK(pf −1, jf ) be a hyperface of cK(pf , if ). Then there exist q, r ∈ N such that p ≥ q ≥ r ≥ s and q−r = pf −1,
such that

cK(pf − 1, jf ) = (c(q, j), c(r, k)) for some c(q, j) ∈ CpM and c(r, k) ∈ CrM. (15.11)

There are two possibilities for q and r: (q, r) = (p− 1, s) or (q, r) = (p, s+ 1).

1. If (q, r) = (p− 1, s), then

cK(pf − 1, jf ) = (c(p− 1, j), c(s, l)), where c(p, i) ≻ c(p− 1, j) ⪰ c(s, l). (15.12)

In this case

εK(cK(pf , if ), cK(pf − 1, jf )) = εM (cM (p, i), cM (p− 1, j)). (15.13)

2. If (q, r) = (p, s+ 1), then

cK(pf − 1, jf ) = (c(p, i), c(s+ 1, k)), where c(p, i) ⪰ c(s+ 1, k) ≻ c(s, l). (15.14)

In this case

εK(cK(pf , if ), cK(pf − 1, jf )) = (−1)pf εM (cM (s+ 1, k), cM (s, l)). (15.15)

Theorem 15.7. Let d ∈ N, M be a mesh of dimension d, εM be a relative orientation on M with corresponding
boundary operator ∂M and discrete differential DM . Let K be the Forman subdivision of M , εK be the orientation
on K constructed above, dK be the corresponding coboundary operator on K. Then

(ΩpM,DM ) ∼= (CpK, dK). (15.16)

with the isomorphism being the mapping of the basis forms to basis cochains introduced in the construction of K.

Definition 15.8. Let d ∈ N, P be a polytope of dimension d. We say that P is a (d-dimensional) quasi-cube if
the mesh topology of P is isomorphic to the mesh topology of the d-cube.

Example 15.9. All 0D and 1D polytopes (points and segments respectively) are quasi-cubes. In 2D quasi-cubes
are quadrilaterals. In 3D quasi-cubes are shapes with 8 vertices, 12 edges and 6 faces (hexahedra).

Definition 15.10. Let M be a mesh. We say that M is a quasi-cubical mesh if all cells of M are quasi-cubes.

Definition 15.11. Let K be a quasi-cubical mesh, p ∈ {1, ...,dimK}, a ∈ Kp, b, c ∈ Kp−1, b, c ≺ a. We say that b
and c are topologically parallel (with respect to a) if their intersection is empty. In that case we will write

a \ b := c, a \ c := b. (15.17)

Definition 15.12. Let (P,⪯) be a partially ordered set, a, b ∈ P with a ⪯ b. The closed interval [a, b] is defined
as

[a, b] := {x ∈ P | a ⪯ x & x ⪯ b} . (15.18)

Definition 15.13. We say that a mesh M is interval-simplicial if for any two cells a, b ∈ M with a ⪯ b, the
interval [a, b] is an abstract simplex.

Proposition 15.14. Let M be a mesh and K be its Forman subdivision. Then M is interval-simplicial if and only
if K is quasi-cubical.

Proposition 15.15. Let M be a mesh of dimension at most 2. Then M is interval-simplicial. In particular, its
Forman subdivision is quasi-cubical.

Definition 15.16. Let d ∈ N and P be a polytope of dimension d. We say that P is a simple polytope if any
of its nodes is connected to exactly d edges.
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Proposition 15.17. Let M be a mesh of dimension 3. Then M is interval-simplicial if and only if all 3-cells of M
are simple polytopes. In particular, if K is the Forman subdivision of M , then K is quasi-cubical if and only if all
3-cells of M are simple polytopes.

Proposition 15.18. Let D ∈ N, K be a quasi-cubical mesh of dimension D, ∂ be the topological (unsigned)
boundary operator on K, δ be the topological (unsigned) coboundary operator on K, ⊥ be the perpendicularity
operator on K, p ∈ {0, ..., D}. Then

∂D−p◦ ⊥p=⊥p+1 ◦δp. (15.19)

16 Metric-dependent calculus on quasi-cubical meshes

Discussion 16.1. As we saw, the Forman subdivision of an interval-simplicial mesh leads to a quasi-cubical mesh.
Interval-simplicial meshes are not that uncommon:

1. all meshes of dimension at most 2 are interval-simplicial;

2. all 3D meshes of simple polytopes are interval-simplicial;

3. all simplicial and quasi-cubical meshes are interval-simplicial;

4. the product of interval-simplicial meshes is an interval-simplicial mesh.

For that reason we will build our calculus on quasi-cubical meshes thought as the Forman subdivision of an interval-
simplicial mesh.

Definition 16.2. Let D ∈ N, K be a quasi-cubical mesh of dimension D, aD ∈ MD, p ∈ {0, ..., D}, bp ∈ Mp,
cD−p ∈MD−p. We say that bp and cD−p are topologically orthogonal with respect to aD if bp, cD−p ⪯ aD, and
the intersection of bp with cD−p is a node in aD. In this case we write

bp ⊕ cD−p = ap and bp ⊥ cD−p. (16.1)

Notation 16.3. Let D ∈ N, P be a polytope of dimension D. The (Euclidean) measure of P is denoted by

µd(P )(= µ(P )). (16.2)

If P is with standard physical dimensions (e.g., it has not been non-dimensionalised), then µd(P ) is of physical
dimension [LD].

Definition 16.4. Let D ∈ N, K be a quasi-cubical mesh of dimension D, p ∈ {0, ..., D}. The inner product of
p-cochains ⟨·, ·⟩p : CpK × CpK → CpK is defined as follows. If bp ∈ Kp, then

⟨bp, bp⟩p :=
1

2Dµ(bp)

∑
cD−p⊥bp

µ(cD−p). (16.3)

The inner product between two different p-cochains in the standard basis is defined to be zero (hence, the standard
cochain basis is an orthogonal basis with respect to the inner product). Extending by bilinearity, we define the
inner product of arbitrary p-cochains (since we already have it for pairs of basis p-cochains).
The operator ⟨·, ·⟩p has physical dimension [LD−2p].

Example 16.5. Let d ∈ N, h ∈ R+ K be a regular cubical mesh of dimension d with size h, p ∈ {0, ..., d}, bp be
an internal p-cell in K. Then

⟨bp, bp⟩p = hd−2p. (16.4)

Definition 16.6. Let d ∈ N, K be a quasi-cubical mesh of dimension d, ∂ be a boundary operator on K,
p ∈ {1, ..., d}. The adjoint coboundary operator on p-cochain δ⋆p : C

pK → Cp−1K is defined as the adjoint of
δp−1 with respect to the inner product of cochains. In other words, for any πp ∈ CpK, ρp−1 ∈ Cp−1,

⟨δ⋆pπp, ρp−1⟩p−1 = ⟨πp, δp−1ρ
p−1⟩p. (16.5)

The operator δ⋆p has physical dimension [L−2].
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Proposition 16.7. Let d ∈ N, K be a quasi-cubical mesh of dimension d, ε be a relative orientation on K,
p ∈ {1, ..., d}, πp ∈ CpK, bp−1 ∈ Kp−1 Then

(δ⋆pπ
p)bp−1 =

∑
ap≻bp−1

⟨ap, ap⟩
⟨bp−1, bp−1⟩

ε(ap, bp−1)π
p(ap). (16.6)

Corollary 16.8. Let d ∈ N, h ∈ R+ K a cubical grid of dimension d with size h with its standard orientation,
p ∈ {0, ..., d}, πp ∈ CpK, bp−1 ∈ Kp−1 be an internal cell. Then

(δ⋆pπ
p)bp−1 =

1

h2

∑
bp−1≺ap

ε(ap, bp−1)π
p(ap). (16.7)

Definition 16.9. Let D ∈ N, K be a compatibly oriented quasi-cubical mesh of dimension D, [K] :=
∑

cD∈KD
cD

be the fundamental class of K ⟨·, ·⟩ be an inner product on K, p ∈ {0, ..., D}. The Hodge star operator on
p-cochains ⋆p : C

pK → CD−pK is defined as the unique map satisfying the following equation: for any πp ∈ CpK
and ρD−p ∈ CD−pK,

⟨⋆pπp, ρD−p⟩D−p = (πp ⌣ ρD−p)[K]. (16.8)

The operator ⋆p has physical dimension [LD−2p].

Proposition 16.10. Let D ∈ N, K be a compatibly oriented quasi-cubical mesh of dimension D, [K] :=∑
cD∈KD

cD be the fundamental class of K ⟨·, ·⟩ be an orthogonal inner product on K, p ∈ {0, ..., D}. The Hodge

star operator ⋆p : C
pK → CD−pK has the following closed form: for any πp ∈ CpK and any cD−p ∈ CD−pK,

(⋆pπ
p)(bD−p) =

∑
ap⊥bD−p

(ap ⌣ bD−p)[K]

⟨bD−p, bD−p⟩
πp(ap). (16.9)

17 Product meshes

Definition 17.1. Let K and L be meshes. The product mesh K×L is defined as the poset product of K and L.

Proposition 17.2. Let K and L be meshes. Then K × L is also a mesh.

Proposition 17.3. Let K and L be quasi-cubical meshes. Then K × L is also a quasi-cubical mesh.

Proposition 17.4. Let M and N be combinatorial meshes. Then

Forman(M×N ) = Forman(M)× Forman(N ). (17.1)

Definition 17.5. Let φ : K → PK and ψ : L → PL be mesh embeddings. Define the product embedding

φ× ψ : K × L → P(K × L) (17.2)

as follows: for any (a, α) ∈ K × L,

(φ× ψ)(a, α) = (φa)× (ψα). (17.3)

Proposition 17.6. Let (K, εK) and (K, εK) be meshes with relative orientations, C•(K, ∂K) and C•(L, ∂L) be the
corresponding chain complexes (of boundary operators). Then the chain complex

C•(K, ∂K)⊗ C•(L, ∂L) (17.4)

induces a relative orientations on K × L. Precisely, if 0,≤ p ≤ dimK, 0,≤ q ≤ dimL, a ∈ Kp, α ∈ Lq, (b, β) ∈
∂p+q(a, α),

εK×L
p+q ((a, α), (b, β)) =

{
εKp (a, b), α = β

(−1)pεLq (α, β), a = b
. (17.5)
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Definition 17.7. Let K, µK and L, µL be Riemannian meshes. Define the product measures µK × µL on K×L
as follows: for any a ∈ K, α ∈ L,

(µK × µL)(a, α) := µK(a)µL(α). (17.6)

Proposition 17.8. Let K and L be combinatorial meshes, (K, gK) and (L, gL) be Riemannian manifolds, φK : K →
K and φL : L → L be mesh embeddings, µK and µL be the induced measures. Then µK×µL is the measure induced
by the embedding φK × φL of the mesh K × L in the Riemannian manifold (K × L, gK × gL).

Proposition 17.9. Let (K, µK) and (L, µL) be Riemannian meshes, ⟨·, ·⟩K and ⟨·, ·⟩L be the respective induced
inner products, ⟨·, ·⟩K×L be the inner product induced by µL × µL, (a, α) ∈ K × L. Then

⟨(a, α)•, (a, α)•⟩K×L = ⟨a•, a•⟩K ⟨α•, α•⟩L. (17.7)

Proof. Let D = dimK, d = dimL. Then dim(K × L) = D + d. Hence,

⟨(a, α)•, (a, α)•⟩K×L =
1

2D+dµK×L(a, α)

∑
(b,β)⊥(a,α)

µK×L(b, β)

=
1

2DµK(a)

1

2dµL(α)

∑
b⊥a, β⊥α

µK(b)µL(β)

=

(
1

2DµK(a)

∑
b⊥a

µK(b)

)  1

2dµL(α)

∑
β⊥α

µL(β)


= ⟨a•, a•⟩K ⟨α•, α•⟩L.

(17.8)

Proposition 17.10. Let K and L be combinatorial meshes, (K, gK) and (L, gL) be smooth Riemannian manifolds
that realise them, ⟨·, ·⟩K and ⟨·, ·⟩L be the induced inner products of differential forms, WK : C•K → HΩ•K and
WL : C•L → HΩ•L be Whitney maps, ⟨·, ·⟩K, ⟨·, ·⟩L, and ⟨·, ·⟩K×L be the induced Whitney inner products (the
last one is induced by WK ⊗WL), σ, τ ∈ C•K, ω, η ∈ C•L. Then

⟨σ ⊗ ω, τ ⊗ η⟩K×L = ⟨σ, τ⟩K ⟨ω, η⟩L. (17.9)

Proof. A direct computation:

⟨σ ⊗ ω, τ ⊗ η⟩K×L = ⟨WK×L(σ ⊗ ω),WK×L(τ ⊗ η)⟩K×L

= ⟨WKσ ⊠WLω,WKτ ⊠WLη⟩K×L

=

∫
K×L

gK×L(WKσ ⊠WLω,WKτ ⊠WLη) volK×L

=

(∫
K

gK(WKσ,WKτ) volK

) (∫
L

gL(WLω,WLη) volL

)
= ⟨WKσ,WKτ⟩K ⟨WLω,WLη⟩L
= ⟨σ, τ⟩K ⟨ω, η⟩L.

(17.10)

18 Approximating vector fields with 1-cochains

Definition 18.1. Let m,n ∈ N, A be a real m×n matrix. An n×m matrix B is called Moore-Penrose inverse
or pseudo-inverse if

ABA = A, (18.1a)

BAB = B, (18.1b)

(AB)T = AB, (18.1c)

(BA)T = BA. (18.1d)

22



Remark 18.2. Let A be a matrix that has a physical dimension [X], B be a Moore-Penrose inverse of A. Then
B [X−1].

Theorem 18.3. Let m,n ∈ N, A be a real m × n matrix. Then A has a unique Moore-Penrose inverse, denoted
by A∗.

Remark 18.4. If the matrix A is of full rank there exists a closed formula for A∗.

1. If A is a square matrix with full rank, i.e., an invertible one, then A∗ = A−1.

2. If m > n and A is an m× n matrix of full rank, then its columns are linearly independent which means that
ATA is symmetric and positive definite and hence invertible. (Its inverse (ATA)−1 is also symmetric and
positive definite.) It is then easy to check that

B := (ATA)−1AT (18.2)

is the Moore-Penrose inverse of A. Indeed, obviously B is a left inverse of A, and

ABA = A(BA) = AIn = A, (18.3a)

BAB = (BA)B = InB = B, (18.3b)

(AB)T = (A(ATA)−1AT )T = (AT )T ((ATA)−1)TAT = A(ATA)−1AT = AB, (18.3c)

(BA)T = ITn = In = BA. (18.3d)

3. If m < n and A is an m × n matrix of full rank, then an analogous reasoning to the previous point shows
that

A∗ = AT (AAT )−1. (18.4)

Definition 18.5. Let d ∈ N and M be a mesh of dimension d. We say that M is flat if the following conditions
are satisfied:

1. it is pure, i.e., all of its cells lie within some d-cell;

2. all its cells are flat (but possibly degenerate) polytopes;

3. it can be embedded in Rd.

Definition 18.6. Let:

1. d ∈ N, d ≥ 1;

2. K be a flat mesh of dimension d (with a chosen embedding in Rd);

3. ϵ be a relative orientation on K;

4. Ni be a node in K connected to n > 0 edges;

5. Ej0 , ..., Ejn−1
be all the edges containing Ni as a node;

6. Ni0 , ...,Nin−1
be the other than other Ni of Ej0 , ..., Ejn−1

respectively.

We define the node matrix LNi of Ni by

LNi
:=

 xi0,0 − xi,0 · · · xi0,d−1 − xi,d−1

...
. . .

...
xin−1,0 − xi,0 · · · xin−1,d−1 − xi,d−1

 ∈ Rn×d. (18.5)

The physical dimension of LNi
is [L].

Definition 18.7. Let d ∈ N with d ≥ 1, K be a mesh of dimension d, π1 ∈ C1K, Ni ∈ K0. Define the neighbor

representation π̂1Ni of π1 at Ni by

π̂1Ni
:= (ϵK(Ej0 ,Ni0)π

1(Ej0), · · · , ϵK(Ejk−1
,Nik−1

)π1(Ejk−1
)) ∈ Rn. (18.6)

The neighbor is a dimensionless operator.
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Definition 18.8. Let d ∈ N with d ≥ 1, K be a flat mesh of dimension d, π1 ∈ C1K, Ni ∈ K0 with corresponding
Euclidean coordinates xi. Define the 1-cochain embedding π1(xi) of π

1 at Ni by

π1(xi) := (LNi
)
∗
π̂1Ni

∈ Rd. (18.7)

The 1-cochain embedding operator has physical dimension [L−1].

Example 18.9. Let h ∈ R+ and K be a regular subdivision with size h of some interval, all the edges in K are
oriented from left to right, π1 ∈ C1K.

1. Consider an interior point Ni with neighboring edges Ei−1 and Ei and corresponding neighboring nodes Ni−1

and Ni+1. Then

LNi
=

(
−h
h

)
⇒ (LNi

)∗ =
1

2h

(
−1 1

)
(18.8)

and

π̂1Ni
=

(
−π1Ei−1

π1Ei

)
⇒ π1(xi) =

1

2h

(
−1 1

)(−π1Ei−1

π1Ei

)
=

1

2h

(
π1Ei−1 + π1Ei

)
. (18.9)

Definition 18.10. Let K be an embedded flat mesh, X be the manifold enclosed by K, u be a vector field on X.
Define the approximation u ∈ C1K as follows. Let Ei be an edge with endpoints Ni0 and Ni1 , oriented from Ni0

to Ni1 . Let p0 and p1 be such that for j = 0, 1, the pj-th edge adjacent to Nij is Ei. Then

u(Ei) :=
1

2
(−(LNi0

u(xi0))p0
+ (LNi1

u(xi1))p1
). (18.10)

The approximation operator is of physical dimension [L].

Example 18.11. With the mesh of the previous example, we have

u(Ei) =
1

2
(hu(xi) + hu(xi+1)) = h

u(xi) + u(xi+1)

2
. (18.11)

Let’s calculate the consecutive application of approximation and embedding (and vice versa).

(
π1
)
(Ei) = h

(
π1(xi) + π1(xi+1)

2

)
=
h

2

1

2h
((π1Ei−1+π

1Ei)+(π1Ei+π1Ei+1)) =
π1Ei−1 + 2π1Ei + π1Ei+1

4
. (18.12)

(u)(xi) =
1

2h
(uEi−1 + uEi) =

1

2h

h

2
((u(xi−1)+u(xi))+(u(xi)+u(xi+1))) =

u(xi−1) + 2u(xi) + u(xi+1)

4
. (18.13)

In both cases of composition of embedding and approximation the final result is the identity operator when π1

(respectively u) is linear with respect to the index i.

Discussion 18.12. Let me summarize the operations relating cochains and embedding. We will use notation
coming from dependent type theory for functions whose codomain depends on the domain. Namely, if X is a type
(set), {Y (x)}x∈X is a family of sets and {f(x) ∈ Y (x)}x∈X , we will write

f :
∏
x∈X

Y (x). (18.14)

Let d ∈ N, K be a quasi-cubical flat mesh of dimension d, X be the manifold it encompasses. We define the
following data:

� n : K0 → N denotes the number of node neighbors of a 0-cell;

�
̂ : C1K →

∏
x0∈K0

Rn(x0) denotes the neighbor representation of a 1-cochain, ̂ [1];

� L :
∏

x0∈K0

Mn(x0),d(R) denotes the node neighbors matrix, L [L];
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� ⋆ :
∏

(m,n)∈N2

Mm,n(R) → Mn,m(R) denotes the Moore-Penrose inverse of a rectangular matrix, (⋆ reverses

physical dimensions);

� : C1K → HomR(C
0K,Rd) denotes the approximation of a 1-cochain as a Euclidean vector-valued 0-cochain,

π1c0 := (Lc0)
⋆ · (π̂1)c0 , (18.15)

[L−1];

� : χX → C1K denotes the discretization of a continuum vector field as a 1-cochain, [L];

19 Vector fields on combinatorial meshes

Definition 19.1. Let K be a quasi-cubical mesh. We say that X ∈ Hom(C0K, C1K) is a combinatorial vector
field if for any N ∈ K0 and E ∈ K1,

N /∈ ∂E ⇒ E•(XN•) = 0 (19.1)

(here a• and a• denote the corresponding basis chains and cochains to a cell a). In other words, a combinatorial
vector field assigns a basis 0-chain N• a 1-chain whose coefficients are zero on the edges that do not contain N .
We will write its coefficients by

X E
N := E•(XN•). (19.2)

The space of all combinatorial vector fields will be denoted by XK.

Definition 19.2. Let K be a quasi-cubical mesh. Define the product of a function with a vector field as follows:
for any f ∈ C0K, X ∈ XK, fX ∈ XK, and when applied at the basis chain of N ∈ K0,

(fX )N• := fN XN•. (19.3)

Proposition 19.3. Let K be a quasi-cubical mesh. Then the space XK is a module over C0K.

Definition 19.4. Let K be a quasi-cubical mesh. The discrete interior product on 1-cochains is defined as

i : XK → Hom(C1K, C0K), iXσ := σ ◦ X ∈ C0K, X ∈ XK, σ ∈ C1K. (19.4)

In other words, for a node N ,

(iXσ)(N ) = (σ ◦ X )(N ) =
∑
E≻N

X E
NσE . (19.5)

Remark 19.5.

ifXσ = f ⌣ iXσ. (19.6)

Indeed, for any N ∈ K0,

(ifXσ)N• = (σ ◦ fX )N• = σ(fN• XN•) = fN• σ(XN•) = (f ⌣ iXσ)N•. (19.7)

Definition 19.6. Let D ∈ N+, K be an orthogonal parallelotope in RD, whose unit directions are the vectors
e1, ..., eD. Define a regular mesh for K as follows. Let h1, ..., hD ∈ R+, K be a grid of (orthogonal) parallelotopes

with sides h1, ..., hD. Let X ∈ XK, X =
∑D

p=1 f
p ∂
∂xp . Define the approximation

J : XK → XK (19.8)

as follows. Let p ∈ {1, ..., D}, E be an edge in the direction of the basis vector ep, N be a node of E with coordinates
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x = (x1, ..., xD). Then,

(JX)EN :=

{
fp(x)
2hp

, N is an interior node
fp(x)
hp

, N is a boundary node
. (19.9)

Remark 19.7. Consider the setup of the previous definition. We will show that the discrete interior product is
a good approximation of the continuous one. Precisely, let X ∈ XK, ω ∈ Ω1K. We will compare iJXR1ω with
RiXω. By definition, iXω = ω(X). In coordinates,

X =

D∑
p=1

fp
∂

∂xp
, f1, ..., fD ∈ FK, (19.10)

ω =

D∑
p=1

gp dx
p, g1, ..., gD ∈ FK, (19.11)

iXω =

D∑
p=1

fp gp. (19.12)

Consider a node N with coordinates x = (x1, ..., xD). Then

(RiXω)N =

D∑
p=1

fp(xp) gp(xp). (19.13)

On the other hand,

(iJXR1ω)N =
∑
E≻N

(JX)EN

∫
E
ω =

D∑
p=1

∑
E≻N , E∥ep

(JX)EN

∫
E
ω. (19.14)

In the above equation, for any p ∈ {1, ..., D} the internal sum consists of 1 or 2 terms: 1 when N is on the
boundary of the direction of ep, and 2 elsewhere. Define the this internal sum as Ap. We need to show it is close
to fp(xp) gp(xp).
First, assume that N is in the interior. Then it is the boundary of two edges parallel to ep: E1 and E2. Combined,
they give the segment E connecting x− hpep with x+ hpep. Then

Ap =
fp(x)

2hp

∫
E
ω = fp(xp)

1

2hp

∫ xp+hp

xp−hp

gp(x1, ..., xp−1, t, xp+1, ..., xD) dt. (19.15)

However, from 1D numerical analysis it follows that the approximation (the lowest order Gauss quadrature)

1

b− a

∫ b

a

g(t) dt ≈ g

(
a+ b

2

)
(19.16)

is exact for polynomials of degree ≤ 1. In our case, substituting a = xp−hp, b = xp+hp implies that fp(xp) gp(xp)
is an O(h2p) approximation of Ap.
Second, assume that E is a boundary node. Fix it to be on the left. Then, using an analogous argument, we need

to compare g(a) with 1
b−a

∫ b

a
g(t) dt which is the formula of left rectangles, this time exact only for constants. This

gives total error of O(hp) in the direction of ep with O(h2) in the interior. Hence, the approximation formula is of
order O(h1 + ...+ hD) with order O(h21 + ...+ h2D) in the interior.

Definition 19.8. Let K be a quasi-cubical mesh. The Lie derivative on 0-cochains is defined as

L : XK → Hom(C0K, C0K), LX := iX ◦ δ, X ∈ XK. (19.17)

The above expression applied to a function f ∈ C0K equals to

LX f = iX (δf) = (δ0f) ◦ X = f ◦ ∂1 ◦X. (19.18)

Remark 19.9. No we are going to analyse to what extent the Leibniz rule is reproduced in the discrete setting.
Namely, for X ∈ XK, f, g ∈ FK we are estimating

∆X (f, g) := (LX f)⌣ g + f ⌣ (LX g)− LX (f ⌣ g). (19.19)
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Let N ∈ K0. Then

∆X (f, g)N• = ((LX f)⌣ g + f ⌣ (LX g)− LX (f ⌣ g))N•

= f(∂(XN•)) gN• + fN• g(∂(XN•))− (f ⌣ g)(∂(XN•))

=
∑
E≻N

X E
N ((

∑
N ′≺E

ε(E ,N ′)fN ′)gN + fN (
∑

N ′≺E
ε(E ,N ′)gN ′)−

∑
N ′≺E

ε(E ,N ′)fN ′gN ′)

=
∑
E≻N

X E
N ε(E ,N ) (δ0f)(E) (δ0g)(E).

(19.20)

Definition 19.10. Let K be a quasi-cubical mesh, ε be relative orientations on K, X,Y ∈ XK. Define the
commutator [X,Y ] ∈ XK as follows: for any edge E and node N ≺ E ,

[X,Y ]EN := 2ε(E ,N )(XE
E\NY

E
N −XE

NY
E
E\N )+

∑
F≻2,0N

∑
E′⊥FE, N∈E′

ε(E ′,N )(XE′

N (Y E
N −Y F\E

E′\N )−Y E′

N (XE
N −XF\E

E′\N )).

(19.21)

Discussion 19.11. Let us calculate the discrete Lie derivative of the commutator on a regular quasic-cubical
mesh and compare it to the continuum. Let D ∈ N+, K be a regular quasi-cubical of dimension D with unit
orthogonal directions e1, ..., eD ∈ RD and lengths h1, ..., hD ∈ R+. We assume that for any p ∈ {0, ..., D}, any
p-element ordered set I ⊂ (1, ..., D), and any p-cell with directions eI1 , ..., eIp , its embedded orientation is induced
by the multivector eI1 ∧ ... ∧ eIp . For any α = (α1, ..., αD) ∈ ND by Nα we will denote the node with coordinates
(α1h1, ..., αDhD).
Let X,Y ∈ XK. Let p ∈ {1, ..., D}, α = (α1, ..., αD) ∈ ND. s ∈ {0, 1} and take the edge Ep,α with endpoints Nα

and Nα+ep . Then for s ∈ 0, 1, assuming Nα+sep is an interior node,

[X,Y ]
Ep,α

Nα+sep
= 2(−1)1−s(X

Ep,α

Nα+(1−s)ep
Y

Ep,α

Nα+sep
− Y

Ep,α

Nα+(1−s)ep
X

Ep,α

Nα+sep
)

+
∑
q ̸=p

∑
t∈{−1,0}

(−1)t+1

(X
Eq,α+sep+teq

Nα+sep
(Y

Ep,α

Nα+sep
− Y

Ep,α+(2t+1)eq

Nα+(2t+1)eq+sep
)− Y

Eq,α+sep+teq

Nα+sep
(X

Ep,α

Nα+sep
−X

Ep,α+(2t+1)eq

Nα+(2t+1)eq+sep
)).

(19.22)

Now, assume these discrete vector fields come from continuous ones:

X = JX = J

(
D∑

p=1

fp
∂

∂xp

)
, Y = JY = J

(
D∑

p=1

gp
∂

∂xp

)
. (19.23)

Then

[X,Y ]
Ep,α

Nα+sep
= (−1)1−s f

p(α+ (1− s)hpep)g
p(α+ shpep)− fp(α+ shpep)g

p(α+ (1− s)hpep)

2h2p

+
∑
q ̸=p

∑
t∈{−1,0}

(−1)t+1

(
fq(α+ shpep)

2hq

(
gp(α+ shpep)− gp(α+ shpep + (2t+ 1)hqeq)

2hp

)
− gq(α+ shpep)

2hq

(
fp(α+ shpep)− fp(α+ shpep + (2t+ 1)hqeq)

2hp

))
.

(19.24)

For simplicity, let s = 0. Then,

[X,Y ]
Ep,α

Nα
= − fp(α+ hpep)g

p(α)− fp(α)gp(α+ hpep)

2h2p

+
∑
q ̸=p

∑
t∈{−1,0}

(−1)t+1

(
fq(α)

2hq

(
gp(α)− gp(α+ (2t+ 1)hqeq)

2hp

)
− gq(α)

2hq

(
fp(α)− fp(α+ (2t+ 1)hqeq)

2hp

))
.

(19.25)
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Hence,

[X,Y ]
Ep,α

Nα
=
fp(α)gp(α+ hpep)− fp(α+ hpep)g

p(α)

2h2p

+
∑
q ̸=p

(
fq(α)

2hq

(
gp(α+ hqeq)− gp(α)

2hp

)
− gq(α)

2hq

(
fp(α+ hqeq)− fp(α)

2hp

))

+
∑
q ̸=p

(
fq(α)

2hq

(
gp(α)− gp(α− hqeq)

2hp

)
− gq(α)

2hq

(
fp(α)− fp(α− hqeq)

2hp

)). (19.26)

Up to a first order approximation, the last expression equals to

[X,Y ]
Ep,α

Nα
≈

(
fp ∂gp

∂xp − gp ∂fp

∂xp

)
(α)

2hp

+
∑
q ̸=p

(
fq ∂gp

∂xq − gq ∂fp

∂xq

)
(α)

4hp

+
∑
q ̸=p

(
fq ∂gp

∂xq − gq ∂fp

∂xq

)
(α)

4hp
,

(19.27)

which simplifies to

[X,Y ]
Ep,α

Nα
≈

D∑
q=1

(
fq ∂gp

∂xq − gq ∂fp

∂xq

)
(α)

2hp
. (19.28)

If we denote Z := [X,Y], its expression in coordinates is

Z =

D∑
p=1

zp
∂

∂xp
, (19.29)

zp =

D∑
q=1

(fq
∂gp

∂xq
− gq

∂fp

∂xq
). (19.30)

Hence, the discrete Lie bracket further simplifies to

[X,Y ]
Ep,α

Nα
≈ zp(α)

2hp
. (19.31)

However, by definition, the right hand side expresses the coefficients of the discrete vector field that approximates
Z. Hence,

J([X,Y]) ≈ [JX, JY], (19.32)

where the left bracket is the continuum Lie bracket, while the right bracket is the discrete Lie bracket.
This calculation is the reason for the definition we gave earlier.

20 Discrete vector bundles and covariant exterior derivative

Definition 20.1. Let d ∈ N, K be a quasi-cubical mesh of dimension d, V be a vector space, p ∈ {0, ..., d}. The
space of V -valued p-cochains in K Cp(K,V ) is defined by

Cp(K,V ) := Hom(CpK,V ) ∼= V ⊗ CpK. (20.1)

The space of V -valued cochains in K C•(K,V ) is defined by

C•(K,V ) :=

d⊕
p=0

Cp(K,V ). (20.2)
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Definition 20.2. Let K be a quasi-cubical mesh, V be a vector space, p ∈ N, q ∈ N. Define the cup product of
a vector-valued cochain with a cochain

⌣ : Cp(K,V )× CqK → Cp+q(K,V ) (20.3)

as follows: for any v ∈ V , τp ∈ CpK, σq ∈ CqK,

(v ⊗ τp)⌣σq := v ⊗ (τp ⌣ σq), (20.4)

and extend it by linearity on Cp(K,V )× CqK.

Remark 20.3. Let K be a quasi-cubical mesh, V be a vector space, v ∈ V , p ∈ N, σp ∈ CpK. Denote by 1 the
identity zero-cochain on K. Then

v ⊗ σp = v ⊗ (1⌣ σp) = (v ⊗ 1)⌣σp. (20.5)

Abuse the notation and identify v ∈ V with v ⊗ 1 ∈ C0(K,V ). Then Equation (20.5) reads as

v ⊗ σp = v⌣σp. (20.6)

Definition 20.4. Let d ∈ N K be a quasi-cubical mesh of dimension d, V be a vector space, p ∈ {0, ..., d − 1}.
A discrete covariant exterior derivative on vector-valued p-cochains is a linear map ∇p : C

p(K,V ) →
Cp+1(K,V ) with the Leibniz property: for any σ0

V ∈ C0(K,V ), τp ∈ CpK,

∇(σ0
V⌣τp) = ∇σ0

V⌣τp + σ0
V⌣δτp. (20.7)

The corresponding discrete covariant exterior derivative on vector-valued cochains ∇ : C•(K,V ) →
C•(K,V ) is then ∇p when acting on Cp(K,V ) (p = 0, ..., d− 1) and zero on Cd(K,V ).

Proposition 20.5. Let K be a quasi-cubical mesh, V be a vector space, v ∈ V , p ∈ N, σp ∈ CpK. Then

∇p(v⌣σp) = ∇0v⌣σp + v⌣δpσ
p. (20.8)

Proof.

∇p(v⌣σp) := ∇p(v⊗ σp) = ∇p((v⊗ 1)⌣σp) = ∇0(v⊗ 1)⌣σp + (v⊗ 1)⌣δpσ
p =: ∇0v⌣σp + v⌣δpσ

p. (20.9)

Proposition 20.6. Let K be a quasi-cubical mesh, V be a vector space, ∇ : C•(K,V ) → C•(K,V ) be a discrete
exterior covariant derivative. Then ∇ satisfies the graded Leibniz rule: for any p, q ∈ N, σp

V ∈ Cp(K,V ), τ q ∈ CqK,

∇p+q(σ
p
V⌣τ q) = ∇pσ

p
V⌣τ q + (−1)pσp

V⌣δqτ
q. (20.10)

Proof. It is enough to prove the proposition for a product element σp
V . Let v ∈ V , θp ∈ CpK and σp

V = v⌣θp.
Then

∇p+q(σ
p
V⌣τ q) = ∇p+q(v⌣(θp ⌣ τ q))

= ∇0v⌣(θp ⌣ τ q) + v⌣(δpθ
p ⌣ τ q) + (−1)pv⌣(θp ⌣ δqτ

q)

= ∇p(v⌣θp)⌣τ q + (−1)p(v⌣θp)⌣δqτ
q

= ∇pσ
p
V⌣τ q + (−1)pσp

V⌣δqτ
q.

(20.11)
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Part IV

Physics

21 Continuous heat transport

Discussion 21.1. In this section we will consider the heat transport phenomenon in both transient and steady-
state form. Our formulation will be represented in the language of differential forms because they better represent
the meaning of physical quantities. Various (weak) reformulations will be presented – those reformulations will give
us hints on how to construct purely discrete formulations.
We will formulate our phenomenon in arbitrary dimensions, although our model problem is in physical 3-dimensional
space. The reason is that we conduct tests in different dimensions and, also, transport phenomena can be applied
in domains with different dimensions.

Discussion 21.2. Let:

� D be a positive integer (space dimension);

� X be an open region in RD (the space region);

� t0[T ] ∈ R be the initial time;

� I := [t0,∞);

The main physical quantities in our model are:

� temperature u[Θ] : I → Ω0X characterised as follows: for any moment t ∈ I and any point x ∈ X,

“temperature [Θ] on x at time t” = u(t)(x) := u(t, x); (21.1)

� heat energy Q[E] : I → ΩDX: for any moment t ∈ I and any volume VD ⊆ X,

“total heat energy [E] of the system on V at time t” =

∫
VD

Q(t); (21.2)

� heat flow rate q[ET−1] : I → ΩD−1X characterised as follows: for any time interval [t1, t2] ⊂ I and any
hypersurface SD−1 ⊂ X,

“total flow [E] through SD−1 in [t1, t2]” =

∫ t2

t1

(∫
SD−1

q(t)

)
dt. (21.3)

(Here we assume that SD−1 is oriented. Let UD and VD be adjacent regions having SD−1 as a common
boundary, such that ε(UD, SD−1) = −1, ε(VD, SD−1) = 1. Then the above equation measures the total flow
from VD to UD.)

We will also need the dual variables of heat energy, temperature, and flow rate.

� dual temperature ũ[ΘLD] : I → ΩDX defined by

ũ := ⋆0u (21.4)

(althiugh using non-zero based temperature scale might make ⋆0 not well defined, this will not cause problems
as we will always take temperature differences when substituting in equations);

� heat energy density Q̃[EL−D] : I → Ω0X defined by

Q̃ := ⋆DQ; (21.5)

� dual flow rate q̃[EL1−D] : I → Ω1X defined by

q̃ := ⋆−1
1 q = (−1)D−1q; (21.6)

The governing laws are formulated as follows.
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� Let f [ET−1] : I → ΩDX be the internal production rate, characterised as follows: for any time interval
[t1, t2] ⊂ I and any volume VD ⊆ X,

“total net heat production [E] in VD in [t1, t2]” =

∫ t2

t1

(∫
VD

f(t)

)
dt. (21.7)

Its dual is the internal production rate density f̃ [EL−DT−1] : I → Ω0X defined by

f̃ = ⋆Df. (21.8)

� Conservation of heat energy is given by the following relation: for any time interval [t1, t2] ⊂ I and any
volume VD ⊆ X,

“heat difference on VD between moments t2 and t1” =− “heat outflow through the boundary of VD in [t1, t2]”

+ “heat production inside VD in [t1, t2]”.

(21.9)

In symbolic terms, the last equation is written as∫
VD

(Q(t2)−Q(t1)) = −
∫ t2

t1

(∫
∂VD

q(t)

)
dt+

∫ t2

t1

(∫
VD

f(t)

)
dt. (21.10)

Using Stokes’ theorem twice, we get the equation∫ t2

t1

(∫
VD

∂Q

∂t

)
dt = −

∫ t2

t1

(∫
VD

dD−1q

)
dt+

∫ t2

t1

(∫
VD

f

)
dt. (21.11)

Since the time interval [t1, t2] and the volume VD are arbitrary, we can drop integrals and arrive at the
differential form

∂Q

∂t
= −dD−1q + f. (21.12)

� Let u0[Θ] ∈ Ω0X be the initial temperature. The initial condition is the prescribed initial temperature:

u(t0) = u0. (21.13)

� Let π̃[EL−DΘ−1] : Ω0X → Ω0X be the dual volumetric heat capacity. The relation between tem-
perature change and heat energy change is given by

∂Q

∂t
= ⋆0

(
∂Q̃

∂t

)
= ⋆0

(
π̃
∂u

∂t

)
. (21.14)

The volumetric heat capacity π[EL−DΘ−1] : ΩDX → ΩDX is related to π̃ by

π = ⋆0 ◦ π̃ ◦ ⋆−1
0 = ⋆0 ◦ π̃ ◦ ⋆D. (21.15)

� Consider two adjacent volumes UD and VD with a common surface SD−1, such that ε(UD, SD−1) = −1
and ε(VD, SD−1) = 1. According to the second law of thermodynamics, heat flows from regions of higher
temperature to regions of lower temperatures. Therefore, the net flow through SD−1 is in the negative
direction of the temperature difference between UD and VD.

Let κ[EL2−DT−1Θ−1] : ΩD−1X → ΩD−1X be the thermal conductivity. The Fourier’s constitutive
relation quantifies the above relation by using κ as a proportionality factor:

q = κd⋆Dũ = κd⋆D ⋆0 u = −κ ⋆1 d0u = − ⋆1 κ̃d0u, (21.16)

where we have denoted the dual conductivity

κ̃ := ⋆−1
1 κ ⋆1 [EL

2−DT−1Θ−1] : Ω1X → Ω1X. (21.17)

We complete our model with boundary conditions. Let ΓD,ΓN form a partition of ∂X into Dirichlet and Neumann
boundary.
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� Let gD[Θ] : I → Ω0ΓD be the prescribed temperature on the Dirichlet boundary ΓD. The Dirichlet bound-
ary condition is given by

trΓD,0 u := u|ΓD
= gD. (21.18)

� Let gN [ET−1] : I → ΩD−1ΓN be the prescribed flow rate on the Neumann boundary ΓN . The Neumann
boundary condition is given by

trΓN ,D−1 q = gN . (21.19)

Its dual is the density of flow rate g̃N [EL1−DT−1] : I → Ω0ΓN ,

g̃N = ⋆ΓN ,D−1gN (21.20)

21.1 Primal strong formulation

21.1.1 Transient

Formulation 21.3. The strong differential formulation for heat transport is obtained by representing heat
energy and heat flow rate in terms of temperature.
Let:

� D be a positive integer (space dimension);

� X be an open region in RD (the space region);

� t0[T ] ∈ R be the initial time;

� I := [t0,∞);

� u0[Θ] ∈ Ω0X be the initial temperature;

� f̃ [EL−DT−1] ∈ Ω0X be the dual internal production rate;

� ΓD,ΓN form a partition of ∂X;

� gD[Θ] : I → Ω0ΓD be the prescribed temperature on the Dirchlet boundary.

� g̃N [ET−1] : I → Ω0ΓN be the prescribed flow rate density through the Neumann boundary;

� π̃[EL−DΘ−1] : Ω0X → Ω0X be the dual volumetric heat capacity;

� κ̃[EL−1T−1Θ−1] : Ω1X → Ω1X be the dual thermal conductivity.

We are solving the following problem for the unknown temperature u[Θ] : I → Ω0X.

π̃
∂u

∂t
= −(d⋆1 ◦ κ̃ ◦ d0)u+ f̃ [EL−DT−1], (21.21a)

trΓD,0 u = gD [Θ], (21.21b)

− (⋆ΓN ,D−1 ◦ trΓN ,D−1 ◦ ⋆1 ◦κ̃ ◦ d0)u = g̃N [EL1−DT−1], (21.21c)

u(t0, ·) = u0 [Θ]. (21.21d)

21.1.2 Steady-state

Formulation 21.4. [Primal strong formulation for the steady-state continuous heat equation using differential
forms] Let:

� D be a positive integer (space dimension);

� X be an open region in RD (the space region);

� f̃ [EL−DT−1] ∈ Ω0X be the dual internal production rate;

� ΓD,ΓN form a partition of ∂X;

� gD[Θ] ∈ Ω0ΓD be the prescribed temperature on the Dirchlet boundary.
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� g̃N [EL1−DT−1] ∈ Ω0ΓN be the prescribed flow rate density through the Neumann boundary;

� κ̃[EL−1T−1Θ−1] : Ω1X → Ω1X be the dual thermal conductivity.

We are solving the following problem for the unknown temperature u[Θ] ∈ Ω0X:

(d⋆1 ◦ κ̃ ◦ d0)u = f̃ [EL−DT−1], (21.22a)

trΓD,0 u = gD [Θ], (21.22b)

− (⋆ΓN ,D−1 ◦ trΓN ,D−1 ◦ ⋆1 ◦κ̃ ◦ d0)u = g̃N [EL1−DT−1]. (21.22c)

21.2 Primal weak formulation

21.2.1 Transient

Discussion 21.5. Using the variables from Formulation 21.3 we are going to introduce an alternative (primal
weak) formulation. Let w ∈ Ker trΓD,0 be a test function (later on the differentiablity assumptions on w can be
weakened). Multiply the conservation of energy with w and integrate over X:∫

X

w ∧ ∂Q

∂t
= −

∫
X

(w ∧ dD−1q) +

∫
X

(w ∧ f)

= −
∫
∂X

tr∂X,D−1(w ∧ q) +
∫
X

(d0w ∧ q) +
∫
X

(w ∧ f)

= −
∫
ΓN

(trΓN ,0 w ∧ trΓN ,D−1 q)−
∫
X

(d0w ∧ ⋆1κ̃d0u) +
∫
X

(w ∧ f)

= −
∫
ΓN

(trΓN ,0 w ∧ gN )−
∫
X

(d0w ∧ ⋆1κ̃d0u) +
∫
X

(w ∧ f)

= −
∫
ΓN

(trΓN ,0 w ∧ gN )− ⟨d0w, κ̃d0u⟩X,1 +

∫
X

(w ∧ f).

(21.23)

We also have:∫
X

w ∧ ∂Q

∂t
=

∫
X

w ∧
(
⋆0π̃

∂u

∂t

)
= ⟨w, π̃ ∂u

∂t
⟩X,0. (21.24)

Equating both equations leads to the following (primal weak) formulation.

Formulation 21.6. [Primal weak formulation for the transient continuous heat equation with differential forms]
Let:

� Let D be a positive integer (space dimension);

� X be an open region in RD representing the material body;

� t0 ∈ R be the initial time;

� I = [t0,∞);

� f [ET−1] : I → ΩDX be the internal production rate;

� u0[Θ] ∈ Ω0X be the initial temperature;

� π̃[EL−DΘ−1] : Ω0X → Ω0X be the heat capacity of the material;

� κ̃[EL2−DT−1Θ−1] : Ω1X → Ω1X be the thermal conductivity of the material;

� ∂X = ΓD ∪ ΓN be the partition of the boundary of X into Dirichlet (ΓD) and Neumann (ΓN ) regions;

� gD[Θ] : I → Ω0ΓD be the prescribed temperature on the Dirichlet boundary;

� gN [ET−1] : I → ΩD−1ΓN be the prescribed flow rate on the Neumann boundary.
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Define the following operators:

A : Ω0X × (I → Ω0X) → R, A(v, w) := ⟨d0v, κ̃d0w⟩X,0 [ET−1Θ−1], (21.25a)

B : Ω0X × (I → Ω0X) → R, B(v, w) := ⟨v, π̃w⟩X,0 [EΘ−1], (21.25b)

G : Ω0X → R, G(v) :=

∫
ΓN

(trΓN
v ∧ gN ) [ET−1], (21.25c)

F : Ω0X → R, F (v) :=

∫
X

(v ∧ f) [ET−1]. (21.25d)

Our unknowns is temperature u[Θ] : I → Ω0X. We are solving the following problem for u:

∀v[Θ] ∈ Ker trΓD,0, B(v,
∂u

∂t
) +A(v, u) = F (v)−G(v) [ET−1Θ], (21.26a)

trΓD,0 u = gD [Θ], (21.26b)

u(t0) = u0 [Θ]. (21.26c)

The flow rate q[ET−1] : I → ΩD−1X is calculated by the formula

q(t, x) =

{
(− ⋆1 κ̃d0u)(t, x), x /∈ ΓN

gN (t, x), x ∈ ΓN

, t ∈ I. (21.27)

21.2.2 Steady-state

Formulation 21.7. [Primal weak formulation for the steady-state continuous heat equation with differential forms]
Let:

� D be a positive integer (space dimension);

� X be an open region in RD, representing a material body;

� κ̃[EL−1T−1Θ−1] : Ω1X → Ω1X be the thermal conductivity of the material;

� f [ET−1] ∈ ΩDX be the internal production rate;

� ∂X = ΓD ∪ ΓN be the partition of the boundary of X into Dirichlet (ΓD) and Neumann (ΓN ) regions;

� gD[Θ] ∈ Ω0ΓD be the prescribed temperature on the Dirichlet boundary;

� gN [ET−1] ∈ ΩD−1ΓN be the prescribed flow rate on the Neumann boundary.

Our unknowns is temperature u[Θ] ∈ Ω0X. We are solving the following problem for u:

∀v ∈ Ker trΓD,0, ⟨d0v, κ̃d0u⟩X,1 =

∫
X

(v ∧ f)−
∫
ΓN

(trΓN ,0 v ∧ gN ) [ET−1Θ], (21.28a)

trΓD,0 u = gD [Θ]. (21.28b)

The flow rate q[ET−1] ∈ ΩD−1X is calculated by the formula

q(x) :=

{
(− ⋆1 κ̃d0u)(x), x /∈ ΓN

gN (x), x ∈ ΓN

. (21.29)

21.3 Mixed weak formulation

21.3.1 Transient

Discussion 21.8. We are going to formulate the mixed weak formulation for continuous heat transport
with differential forms. Consider the model Discussion 21.2 with the same domains and variable names. Let
r[ET−1] ∈ Ker (trΓN ,D−1). Then

κ−1q = dD⋆ ũ = − ⋆1 d0u. (21.30)
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Hence,

⟨r, κ−1q⟩X,D−1 = ⟨r,− ⋆1 d0u⟩X,D−1

= −
∫
X

d0u ∧ r

= −
∫
∂X

tr∂X,0 u ∧ tr∂X,D−1 r +

∫
X

(u ∧ dD−1r)

= −
∫
ΓD

gD ∧ trΓD,D−1 r + ⟨⋆0u, dD−1r⟩

= −
∫
ΓD

gD ∧ trΓD,D−1 r + ⟨ũ, dD−1r⟩.

(21.31)

Let w̃[Θ] ∈ ΩDX. Taking the inner product of the conservation law with w̃ gives

⟨π∂ũ
∂t
, w̃⟩X,D = −⟨dD−1q, w̃⟩X,D + ⟨f, w̃⟩. (21.32)

This leads to the following (mixed weak) formulation.

Formulation 21.9. [Mixed weak formulation for the transient continuous heat equation with differential forms]
Let:

� D be a positive integer (space dimension);

� X be a D-dimensional open region, representing a material body;

� t0 ∈ R be the initial time;

� I = [t0,∞) be the time-interval where the process occurs;

� f [ET−1] : I → ΩDX be the internal production rate;

� u0[Θ] ∈ Ω0X be the initial temperature;

� κ[EL2−DT−1Θ−1] : ΩD−1X → ΩD−1X be the thermal conductivity of the material;

� π[EL−DΘ−1] : ΩDX → ΩDX be the heat capacity of the material;

� ∂X = ΓD ∪ ΓN be the partition of the boundary of X into Dirichlet (ΓD) and Neumann (ΓN ) regions;

� gD[Θ] : I → Ω0ΓD be the prescribed temperature on the Dirichlet boundary;

� gN [ET−1] : I → ΩD−1ΓN be the prescribed flow rate on the Neumann boundary.

Define the following operators:

A : ΩD−1X × (I → ΩD−1X) → R, A(r, s) := ⟨r, κ−1s⟩X,D−1 [E−1TΘ], (21.33a)

B : ΩDX × (I → ΩD−1X) → R, B(w̃, r) := ⟨dD−1r, w̃⟩X,D [L−D], (21.33b)

C : ΩDX × (I → ΩDX) → R, C(w̃, wD) := ⟨πwD, w̃⟩X,D [EL−2DΘ−1], (21.33c)

G : ΩD−1X → R, G(r) :=

∫
ΓD

(trΓD,D−1 r ∧ gD) [Θ], (21.33d)

F : ΩDX → R, F (w̃) := ⟨f, w̃⟩X,D [ET−1L−D]. (21.33e)

Our unknowns are:

� q[ET−1] : I → ΩD−1X (heat flow rate);

� ũ[ΘLD] : I → ΩDX (dual temperature).

We are solving the following problem for q and ũ:

∀r[ET−1] ∈ Ker trΓN ,D−1, A(r, q)−BT (r, ũ) = −G(r) [ET−1Θ], (21.34a)

∀w̃[ΘLD] ∈ ΩDX, −B(w̃, q)− C(w̃,
∂ũ

∂t
) = −F (w̃) [ET−1Θ], (21.34b)

trΓN ,D−1 q = gN [ET−1], (21.34c)

ũ(t0) = ⋆X,0u0 [ΘLD]. (21.34d)
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The temperature u[Θ] : I → Ω0X is calculated in the post-processing phase by the formula

u(t, x) :=


u0(x), t = t0

(⋆Dũ)(t, x), t > t0 and x /∈ ΓD

gD(t, x), t0 > 0 and x ∈ ΓD

. (21.35)

21.3.2 Steady-state

Formulation 21.10. [Mixed weak formulation for the steady-state continuous heat equation with differential
forms] Let:

� D be a positive integer (space dimension);

� X be a D-dimensional open region, representing a material body;

� f [ET−1] ∈ ΩDX be the internal production rate;

� κ[EL2−DT−1Θ−1] : ΩD−1X → ΩD−1X be the thermal conductivity of the material;

� ∂X = ΓD ∪ ΓN be the partition of the boundary of X into Dirichlet (ΓD) and Neumann (ΓN ) regions;

� gD[Θ] ∈ Ω0ΓD be the prescribed temperature on the Dirichlet boundary;

� gN [ET−1] ∈ ΩD−1ΓN be the prescribed flow rate on the Neumann boundary.

Define the following operators:

A : ΩD−1X × ΩD−1X → R, A(r, s) := ⟨r, κ−1s⟩X,D−1 [E−1TΘ], (21.36a)

B : ΩDX × ΩD−1X → R, B(w̃, r) := ⟨dD−1r, w̃⟩X,D [L−D], (21.36b)

G : ΩD−1X → R, G(r) :=

∫
ΓD

(trΓD,D−1 r ∧ gD) [Θ], (21.36c)

F : ΩDX → R, F (w̃) := ⟨f, w̃⟩X,D [ET−1L−D]. (21.36d)

Our unknowns are:

� q[ET−1] ∈ ΩD−1X (heat flow rate);

� ũ[ΘLD] ∈ ΩDX (dual temperature).

We are solving the following problem for q and u:

∀r[ET−1] ∈ Ker trΓN ,D−1, A(r, q)−BT (r, ũ) = −G(r) [ET−1Θ], (21.37a)

∀w̃[ΘLD] ∈ ΩDX, −B(w̃, q) = −F (w̃) [ET−1Θ], (21.37b)

trΓN ,D−1 q = gN [ET−1]. (21.37c)

The temperature u[Θ] ∈ Ω0X is calculated in the post-processing phase by the formula

u(x) :=

{
(⋆Dũ)(x), x /∈ ΓD

gD(x), x ∈ ΓD

. (21.38)

22 Discrete heat transport

Notation 22.1. Let S be a set, T be a subset of S, V be a real vector space, u ∈ HomR(FreeR(S), V ). We will
denote by

u|T ∈ HomR(FreeR(T ), V ) (22.1)

the map defined in the same way of u but acting on formal linear combinations of the elements in T .

Notation 22.2. Let D ∈ N, K be a flat mesh of dimension D, c0 ∈ C0(∂K) with corresponding point x ∈ RD. By
nc0 we will denote the exterior unit normal at x to K. When c0 has more than one non-parallel adjacent hyperfaces
(for instance, in 3D, it can lie on an edge or at a corner), we will take some average of the normals to those faces.
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The easiest one is to sum all exterior unit normals and divide by the length of the sum. This is the approach taken
in the software implementation.
When Γ ⊆ (∂K)0, we will understand n as a function from Γ to RD or as a linear map in Hom(FreeR(Γ),RD).

Discussion 22.3. We are going to state the governing laws for the discrete heat transport phenomenon in the
strong formulation.
Let:

� D be a positive integer (physical dimension);

� M be a manifold-like flat mesh of dimension D;

� K be the Forman subdivision of M ;

� t0 ∈ R be the initial time, I = [t0,∞).

Physical quantities in our model are:

� temperature u[Θ] : I → C0K;

� heat energy density Q̃[EL−D] : I → C0K;

� dual heat flow rate q̃[EL1−DT−1] : I → C1K;

The governing laws are the following.

� Let K ′ := K \ ∂K be the interior of K, f̃ [EL−DT−1] ∈ C0K ′ be the dual internal production rate; Conser-
vation of heat energy is modeled by the equation

∂Q̃

∂t

∣∣∣∣∣
K′

0

= (δ⋆1 q̃)|K′
0
+ f̃ . (22.2)

� Let u0[Θ] ∈ C0K be the initial temperature. The initial condition is given by prescribed initial temperature:

u(t0, ·) = u0. (22.3)

� Let π̃[EL−DΘ−1] : C0K → C0K be the dual volumetric heat capacity (its matrix in the standard basis is
diagonal). The relation between temperature change and heat energy change is given by

∂Q̃

∂t
= π̃

∂u

∂t
. (22.4)

� Let κ̃[EL2−DT−1Θ−1] : C1K → C1K be the dual thermal conductivity (its matrix in the standard basis is
diagonal). The Fourier’s constitutive relation is given by

q̃ = −κ̃(δ0u). (22.5)

We complete our model with boundary conditions. Let ΓD,ΓN form a partition of ∂K into Dirichlet and Neumann
boundary.

� Let gD[Θ] : I → C0ΓD be the prescribed temperature on the Dirichlet boundary ΓD. The Dirichlet bound-
ary condition is given by

u|ΓD
= gD. (22.6)

� Let n[L−1] : ΓN → Rd be the generalized exterior unit normal, g̃N [EL1−DT−1] : I → C0ΓN of physical
dimension [EL1−DT−1] be the prescribed dual flow rate through the Neumann boundary. The Neumann
boundary condition is given by

q̃
∣∣
ΓN

· n = g̃N . (22.7)
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22.1 Primal strong formulation

22.1.1 Steady-state

Formulation 22.4. [Primal strong formulation for the steady-state discrete heat equation with discrete differential
forms] Let:

� D ∈ N;

� M be a manifold-like flat mesh of dimension D;

� K be the Forman subdivision of M ;

� K ′ := K \ ∂K be the interior of K;

� f̃ [EL−DT−1] ∈ C0K be the dual internal production rate;

� ΓD,ΓN form a partition of (∂K)0;

� n[L−1] : ΓN → RD be the generalized exterior unit normal;

� gD[Θ] ∈ C0ΓD be the prescribed temperature on the Dirichlet boundary;

� g̃N [EL1−DT−1] ∈ C0ΓN be the prescribed flow rate density through the Neumann Boundary;

� π̃[EL−DΘ−1] : C0K → C0K be the dual heat capacity (its matrix in the standard basis is diagonal);

� κ̃[EL−DT−1Θ−1] : C1K → C1K be the dual conductivity (its matrix in the standard basis is diagonal);

We are solving the following problem for u[Θ] ∈ C0K:

(trK′
0
◦δ⋆1 ◦ κ̃ ◦ δ0)u = trK′

0
f̃ (balance of heat energy) [EL−DT−1], (22.8a)

trΓD,0 u = gD (Dirichlet boundary condition) [Θ], (22.8b)

− (κ̃ ◦ δ0)u
∣∣∣
ΓN

· n = g̃N (Neumann boundary condition) [EL1−DT−1]. (22.8c)

22.1.2 Transient

Formulation 22.5. By substituting q with κ̃δ0u and Q with π̃u, we arrive at the following formulation with only
one unknown (the temperature u). Let:

� D ∈ N;

� M be a manifold-like flat mesh of dimension D;

� K be the Forman subdivision of M ;

� K ′ := K \ ∂K be the interior of K;

� t0 ∈ R be the initial time, t0 [T ];

� I := [t0,∞) be the time interval;

� u0[Θ] ∈ C0K be the initial temperature;

� f̃ [EL−DT−1] ∈ C0K be the dual internal production rate;

� ΓD,ΓN form a partition of (∂K)0;

� n[L−1] : ΓN → Rd be the generalized exterior unit normal;

� gD[Θ] : I → C0ΓD be the prescribed temperature on the Dirichlet boundary;

� g̃N [EL1−DT−1] : I → C0ΓN be the prescribed flow rate density on the Neumann boundary;

� π̃[EL−DΘ−1] : C0K → C0K be a material property (dual heat capacity) of the nodes of K (its matrix in the
standard basis is diagonal);

� κ̃[EL2−DT−1Θ−1] : C1K → C1K be a material property (dual thermal conductivity) of the edges of K (its
matrix in the standard basis is diagonal).
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We are solving the following problem for u[Θ] : I → C0K:

trK′
0

(
∂(π̃u)

∂t

)
= trK′

0
(f̃ − (δ⋆1 ◦ κ̃ ◦ δ0)u) (conservation of heat energy) [EL−DT−1], (22.9a)

trΓD,0 u = gD (Dirichlet boundary condition) [Θ], (22.9b)

− (κ̃ ◦ δ0)u
∣∣∣
ΓN

· n = g̃N (Neumann boundary condition) [EL1−DT−1]. (22.9c)

Discussion 22.6. Consider Formulation 22.5. This formulation is discrete in space but continuous in time. In
order to numerically solve it we need to discretize the time variable. We will use the trapezoidal (Crank-Nicolson)
method.
Let τ [T ] ∈ R+ be the time step, s ∈ N, ts := t0 + sτ , us[Θ] := u(ts, ·) ∈ C0K, B[EL−DT−1Θ−1] := δ⋆1 ◦ κ̃ ◦ δ0.
Integrating the conservation of heat energy in [ts, ts+1], we get

(π̃us+1 − π̃us)
∣∣
K′

0
= −

∫ ts+1

ts

(Bu(t, ·))|K′
0
dt+

∫ ts+1

ts

f̃ dt ≈ −τ
2
(Bus +Bus+1)

∣∣
K′

0
+ τ f̃ . (22.10)

Rearranging, we get the discretized equation

((π̃ +
τ

2
B)us+1)

∣∣∣
K′

0

= ((π̃ − τ

2
B)us)

∣∣∣
K′

0

+ τ f̃ . (22.11)

Define the operators Lτ , Rτ [EL
−DΘ−1] ∈ Hom(C0K,C0K) by

Lτ := π̃ +
τ

2
B, (22.12a)

Rτ := π̃ − τ

2
B. (22.12b)

The discretized in time (space is already discrete) temperature {us[Θ] ∈ C0K}∞s=0 is find iteratively as follows.
u0 = u0 and for any s > 0, us is solution to the following problem:

(Lτu
s)|K′

0
= (Rτys−1)|K′

0
+ τ f̃ (balance of heat energy) [EL−D], (22.13a)

us|ΓD
= gD (Dirichlet boundary condition) [Θ], (22.13b)

− (κ̃ ◦ δ0)us
∣∣∣
ΓN

· n = g̃N (Neumann boundary condition) [EL1−DT−1]. (22.13c)

Of course, in practice we solve it for a finite number of time steps. Usually, we compare tho adjacent solutions us

and us+1 and stop when the relative error is sufficiently small, i.e., until we reach a steady state.

22.2 Primal weak formulation

22.2.1 Steady-state

Formulation 22.7. [Primal weak formulation for the steady-state discrete heat equation with discrete differential
forms] The following formulation is a discrete version of Formulation 21.7. Let:

� Let D be a positive integer (space dimension);

� K be an oriented quasi-cubical mesh of dimension D representing the material body;

� [K] be the fundamental class of K;

� κ̃[EL2−DT−1Θ−1] : C1K → C1K be the thermal conductivity of the material, such that for any edge c1 ∈ K1,
there exists some λ > 0 such that κ̃(c1) = λc1;

� f [ET−1] ∈ CDK be the internal production rate;

� ∂K = ΓD ∪ ΓN be the partition of the boundary of K into Dirichlet (ΓD) and Neumann (ΓN ) regions;

� [ΓN ] be the fundamental class of ΓN , where ΓN has the boundary orientation induced from K;

� gD[Θ] ∈ C0ΓD be the prescribed temperature on the Dirichlet boundary;

� gN [ET−1] ∈ CD−1ΓN be the prescribed flow rate on the Neumann boundary.
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Our unknown is temperature u[Θ] ∈ C0K. We are solving the following problem for u:

∀v ∈ Ker trΓD,0, ⟨δ0v, κ̃δ0u⟩K,1 = (v ⌣ f)[K]− (trΓN ,0 v ⌣ gN )[ΓN ] [ET−1Θ], (22.14a)

trΓD,0 u = gD [Θ]. (22.14b)

The flow rate q[ET−1] ∈ CD−1K is calculated in the post-processing phase by the formula

q(cD−1) :=

{
(− ⋆1 κ̃δ0u)(cD−1), cD−1 ∈ KD−1 \ (ΓN )D−1

gN (cD−1), cD−1 ∈ (ΓN )D−1

. (22.15)

Discussion 22.8. We are going to derive a solution to Formulation 22.7. For any p ∈ {0, ..., D} denote

np := |Kp| = dim(CpK) = dim(CpK). (22.16)

The cochains (N0, ..., Nn0−1) form the standard basis of C0K. Define the matrix A ∈Mn0×n0
(R) by

Ai,j := ⟨δN i, κ̃δ0N
i⟩K,1, i, j = 0, ..., n0 − 1, (22.17)

and the vectors F,G,H ∈ Rn0 by

Fi := (N i ⌣ f)[K], i = 0, ..., n0 − 1, (22.18a)

Gi := (trΓN ,0N
i ⌣ gN )[ΓN ], i = 0, ..., n0 − 1, (22.18b)

H := F−G. (22.18c)

Denote the unknown coefficients of u as {Uj}n0−1
j=0 , i.e.,

u =

n0−1∑
j=0

UjN
j (22.19)

Finally, let J be the set of nodes on the Dirichlet boundary ΓD, and J := {0, ..., n0 − 1} \ J . We get the system

n0−1∑
j=0

Ai,jUj = Hi, i ∈ J, (22.20a)

Ui = gD(Ni), i ∈ J. (22.20b)

This leads to the system of equations∑
j∈J

Ai,jxj = Hi −
∑
j∈J

Ai,jgD(Nj), i ∈ J. (22.21)

Denote by A the restriction of A to the rows and columns in J , by H the right-hand side of the above equation
(again only for the indices in J), and by U the restriction of U on the indices in J . We arrive at the final linear
system with positive-definite matrix A:

AU = H. (22.22)

After solving it, we get the final solution

Ui =

{
Ui, i ∈ J

gD(Ni), i ∈ J
. (22.23)

22.2.2 Transient

Formulation 22.9. [Primal weak formulation for the transient discrete heat equation with discrete differential
forms] The following formulation is a discrete version of Formulation 21.6. Let:

� Let d be a positive integer (space dimension);

� K be an oriented quasi-cubical mesh of dimension d representing the material body;

� [K] be the fundamental class of K;
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� t0 ∈ R be the initial time;

� I = [t0,∞);

� f [ET−1] : I → CdK be the internal production rate;

� u0[Θ] ∈ C0K be the initial temperature;

� π̃[EL−DΘ−1] : I × C0K → C0K be the heat capacity of the material;

� κ̃[EL2−DT−1Θ−1] : I × C1K → C1K be the thermal conductivity of the material, such that at any moment
t ∈ I and for any edge c1 ∈ K1, there exists some λ > 0 such that κ̃(c1) = λc1;

� ∂K = ΓD ∪ ΓN be the partition of the boundary of K into Dirichlet (ΓD) and Neumann (ΓN ) regions;

� [ΓN ] be the fundamental class of ΓN , where ΓN has the boundary orientation induced from K;

� gD[Θ] : I be the prescribed temperature on the Dirichlet boundary;

� gN [ET−1] : I → CD−1ΓN be the prescribed flow rate on the Neumann boundary.

define the following operators:

A : C0K × (I → C0K) → R, A(v, w) := ⟨δ0v, κ̃δ0w⟩K,0 [ET−1Θ−1], (22.24a)

B : C0K × (I → C0K) → R, B(v, w) := ⟨v, π̃w⟩K,0 [EΘ−1], (22.24b)

G : C0K → R, G(v) := (trΓN
v ⌣ gN )[ΓN ] [ET−1], (22.24c)

F : C0K → R, F (v) := (v ⌣ f)[K] [ET−1]. (22.24d)

Our unknowns is temperature u[Θ] : I → C0K. We are solving the following problem for u:

∀v[Θ] ∈ Ker trΓD,0, B(v,
∂u

∂t
) +A(v, u) = F (v)−G(v) [ET−1Θ], (22.25a)

trΓD,0 u = gD [Θ], (22.25b)

u(t0) = u0 [Θ]. (22.25c)

The flow rate q[ET−1] : I → CD−1K is calculated in the post-processing phase by the formula

q(t, cD−1) =

{
(− ⋆1 κ̃δ0u)(t, cD−1), cD−1 ∈ KD−1 \ (ΓN )D−1

gN (t, cD−1), cD−1 ∈ (ΓN )D−1

, t ∈ I. (22.26)

Discussion 22.10. We are going to derive a solution to Formulation 22.9 using the trapezoidal rule for time
integration. We will assume that the heat capacity π̃ is time-independent which will allow us to rearrange the time
derivative:

B(v,
∂u

∂t
) =

d

dt
B(v, u). (22.27)

For further simplicity we will also assume that all the rest input data internal production rate, thermal conductivity,
boundary conditions) are also time-independent. Denote H := F −G. We can then integrate the equation

d

dt
B(v, u) +A(v, u) = H(v) (22.28)

with respect to t in the interval [α, β] ⊂ I to get

B(v, u(β))−B(v, u(α)) +A(v,

∫ β

α

u dt) = (β − α)H(v). (22.29)

For an interval [α, β] the trapezoidal rule gives the approximation

A(v,

∫ β

α

u dt) ≈ A(v,
β − α

2
(u(α) + u(β))). (22.30)

Hence, if we partition I into segements with size τ with moments of time {ts := t0 + τs}s≥0, and if we denote
{Us := u(ts)}s≥0, we get

B(v, Us)−B(v, Us−1) +
τ

2
(A(v, Us−1) +A(v, Us)) = τH(v). (22.31)
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The above equation is restated as

(B − τ

2
A)(v, Us) = (B +

τ

2
A)(v, Us−1) + τH(v). (22.32)

Define the left-hand side and right-hand side operators

Lτ := B − τ

2
A, (22.33a)

Rτ := B +
τ

2
A. (22.33b)

The initial condition corresponds to U0 = u0(t0, ·). At any moment s > 0 we get the following problem for
Us ∈ C0K:

∀v[Θ] ∈ Ker trΓD,0, Lτ (v, U
s) = Rτ (v, U

s−1) + τH(v), (22.34a)

trΓD,0 U
s = gD. (22.34b)

As in the steady-state case Discussion 22.8, let J be the set of nodes on the Dirichlet boundary ΓD, and J :=
{0, ..., n0 − 1} \ J . Denote the unknown coefficients of Us as {Us

j}
n0−1
j=0 , i.e.,

Us =

n0−1∑
j=0

Us
jN

j . (22.35)

In an analogous derivation to the one in Discussion 22.8, let Lτ be the matrix in the standard basis of the restriction

of Lτ to the rows and colums in J , U
s
be the restriction of Us on J , and Hτ ∈ R|J| be the vector defined by

Hτ := τHi −
∑
j∈J

(Lτ )i,jgD(Nj), i ∈ J. (22.36)

This leads to the system

Lτ U
s
= RτUs−1 +Hτ , (22.37)

where RτUs−1 is the restriction of RτU
s−1 to J . This leads to the the following iterative process.

Algorithm 22.11 (Algorithm for solving the transient primal weak formulation for the discrete heat transfer
phenomenon using trapezoidal rule for time integration, assuming time-independent input data). Let:

� Let D be a positive integer (space dimension);

� K be an oriented quasi-cubical mesh of dimension D representing the material body;

� [K] be the fundamental class of K;

� t0[T ] ∈ R be the initial time;

� τ [T ] ∈ R+ be the time step;

� f [ET−1] ∈ CDK be the internal production rate;

� u0[Θ] ∈ C0K be the initial temperature;

� π̃[EL−DΘ−1] : I × C0K → C0K be the heat capacity of the material;

� κ̃[EL2−DT−1Θ−1] : C1K → C1K be the thermal conductivity of the material;

� ∂K = ΓD ∪ ΓN be the partition of the boundary of K into Dirichlet (ΓD) and Neumann (ΓN ) regions;

� [ΓN ] be the fundamental class of ΓN , where ΓN has the boundary orientation induced from K;

� gD[Θ] ∈ C0ΓD be the prescribed temperature on the Dirichlet boundary;

� gN [ET−1] ∈ CD−1ΓN be the prescribed flow rate on the Neumann boundary.

Our algorithm has 3 phases.

1. Time-independent phase. Do the following calculations:

� n0 := |K0|;
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� the sparse matrix A ∈Mn0×n0
(R),

Ai,j := ⟨δ0N j , κ̃δ0N
i⟩K,1, i, j = 0, ..., n0 − 1; (22.38)

� the diagonal matrix B ∈Mn0×n0
(R),

Bi,j := ⟨N j , π̃N i⟩K,0, i, j = 0, ..., n0 − 1; (22.39)

� the right-hand side vectors F,G,H ∈ Rn0 ,

Fi := (N i ⌣ f)[K], i = 0, ..., n0 − 1, (22.40a)

Gi := (trΓN ,0N
i ⌣ gN )[ΓN ], i = 0, ..., n0 − 1, (22.40b)

H := F−G; (22.40c)

� the sparse matrices (having the same stencil as A) Lτ ,Rτ ∈Mn0×n0
(R),

Lτ := B− τ

2
A, (22.41a)

Rτ := B+
τ

2
A; (22.41b)

� the sets J := (ΓD)0 and J := {0, ..., n0 − 1} \ J ;
� the vector Û ∈ R|J| of the prescribed temperature on the Dirichlet boundary:

Ûi = gD(Ni), i ∈ J ; (22.42)

� the restricted matrix Lτ , constructed out of Lτ with rows and columns in J removed, and the restricted

vector Hτ ∈ R|J|

(Hτ )i := τHj −
∑
j∈J

(Lτ )i,jÛj , i ∈ J ; (22.43)

� the Cholesky decomposition

Lτ = SτSτ
T
, (22.44)

where Sτ is a lower-triangular sparse matrix with positive diagonal;

� the time independent part of the restricted solution

Zτ := Lτ
−1

Hτ = Sτ
−T

Sτ
−1

Hτ (22.45)

(of course, we do not find the inverses of Sτ and its transpose, but apply forward and back substitution);

� the initial coordinates U0 ∈ Rn0 of the temperature,

U0
i := u0(Ni), i = 0, ..., n0 − 1. (22.46)

2. Time-dependent (loop) phase. For any s > 0 (until some predefined final moment is reached or some
condition for small error is fulfilled) calculate:

� the time-dependent part Vτ
s
of the right-hand side (allocated only once, updated on every step),

Vτ
s
:= (RτUs−1); (22.47)

� the time-dependent part Wτ
s
of the solution (allocated only once, updated on every step),

Wτ
s
:= Sτ

−T
Sτ

−1
vτ (22.48)

(with forward and back substitution);

� the solution U
s
on the non-Dirichlet nodes (allocated only once, updated on every step),

U
s
:= Wτ

s
+ Zτ ; (22.49)

� the final solution

Us
i :=

{
U

s

i , i ∈ J

Ûi, i ∈ J
. (22.50)

3. Post-processing. For each time moment ts the flow rate qs ∈ CD−1K is as follows: for any c ∈ KD−1,

qs(c•) :=

{
(− ⋆1 ◦κ̃ ◦ δ0 us)(c•), c ∈ KD−1 \ (ΓN )D−1

gN (c•), c ∈ (ΓN )D−1

. (22.51)
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22.3 Mixed weak formulation

22.3.1 Steady-state

Formulation 22.12. [Mixed weak formulation for the steady-state continuous heat equation with differential
forms] The following formulation is a discrete version of Formulation 21.10. Let:

� D be a positive integer (space dimension);

� K be an oriented quasi-cubical mesh of dimension D representing the material body;

� [K] be the fundamental class of K;

� κ[EL2−DT−1Θ−1] : CD−1K → CD−1K be the thermal conductivity of the material, such that for any hyper-
face cD−1 ∈ KD−1, there exists some λ > 0 such that κ(cD−1) = λcD−1;

� f [ET−1] ∈ CDK be the internal production rate;

� ∂K = ΓD ∪ ΓN be the partition of the boundary of K into Dirichlet (ΓD) and Neumann (ΓN ) regions;

� [ΓD] be the fundamental class of ΓD, where ΓD has the boundary orientation induced from K;

� gD[Θ] ∈ C0ΓD be the prescribed temperature on the Dirichlet boundary;

� gN [ET−1] ∈ CD−1ΓN be the prescribed flow rate on the Neumann boundary.

Define the following operators:

A : CD−1K × CD−1K → R, A(r, s) := ⟨r, κ−1s⟩K,D−1 [E−1TΘ], (22.52a)

B : CDK × CD−1K → R, B(ṽ, r) := ⟨δD−1r, ṽ⟩K,D [L−D], (22.52b)

G : CD−1K → R, G(r) := (trΓD,D−1 r ⌣ gD)[ΓD] [Θ], (22.52c)

F : CDK → R, F (ṽ) := ⟨f, ṽ⟩K,D [ET−1L−D]. (22.52d)

Our unknowns are:

� q[ET−1] ∈ CD−1K (heat flow rate);

� ũ[ΘLD] ∈ CDK (dual temperature).

We are solving the following problem for q and ũ:

∀r[ET−1] ∈ Ker trΓN ,D−1, A(r, q)−BT (r, ũ) = −G(r) [ET−1Θ], (22.53a)

∀ṽ[ΘLD] ∈ CDK, −B(ṽ, q) = −F (ṽ) [ET−1Θ], (22.53b)

trΓN ,D−1 q = gN [ET−1]. (22.53c)

The temperature u[Θ] ∈ C0K is calculated in the post-processing phase by the formula

u(a0) :=

{
(⋆dũ)(a0), a0 /∈ (ΓD)0

gD(a0), a0 ∈ (ΓD)0
. (22.54)

Discussion 22.13. We are going to derive a solution to Formulation 22.12. For any p ∈ {0, ..., d} denote

np := |Kp| = dim(CpK) = dim(CpK). (22.55)

The cochains (cp,0, ..., cp,n0−1) form the standard basis of CpK. Define the diagonal matrix A ∈ MnD−1×nD−1
(R),

the sparse matrix B ∈Mnd×nD−1
(R), and the vectors F ∈ Rnd , G ∈ RnD−1 by

Ai,j := ⟨cd−1,j , κ−1cd−1,i⟩, i, j = 0, ..., nD−1 − 1, (22.56a)

Bk,i := ⟨δD−1c
d−1,i, cd,k⟩, k = 0, ..., nd − 1, i = 0, ..., nD−1 − 1, (22.56b)

Fk := ⟨f, cd,k⟩, k = 0, ..., nd − 1, (22.56c)

Gi := (trΓD,d−1 c
d−1,i ⌣ gD)[ΓD], i = 0, ..., nD−1 − 1. (22.56d)

Denote the unknown coefficients of q as {Qj}nD−1−1
j=0 , i.e.,

q =

ns−1−1∑
j=0

Qjc
d−1,j , (22.57)
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and the unknown coefficients of ũ as {Ũk}nd−1
k=0 , i.e.,

ũ =

nd−1∑
k=0

Ũkc
d,k. (22.58)

Finally, let J be the set of (d− 1)-cells on the Neumann boundary ΓN , and J := {0, ..., nD−1 − 1} \ J . We get the
system

nD−1−1∑
j=0

Ai,jQj −
nd−1∑
k=0

(BT )i,kyk = −Gi, i ∈ J, (22.59a)

−
nD−1−1∑

i=0

Bk,iQi = −Fk, k = 0, ..., nd − 1, (22.59b)

Qi = gN (cd−1,i), i ∈ J. (22.59c)

This leads to the system of equations

∑
j∈J

Ai,jQj −
nd−1∑
k=0

(BT )i,kyk = −Gi −
∑
j∈J

Ai,jgN (cd−1,j), i ∈ J, (22.60a)

−
∑
i∈J

Bk,iQi = −Fk +
∑
i∈J

Bk,igN (cd−1,i), k = 0, ..., nd − 1. (22.60b)

(Note that since A is diagonal, Ai,j = 0 when i ∈ J and j ∈ J .)

Define the matrices A ∈M|J|×|J|(R), B ∈Mnd×|J|(R), and vectors Q̂ ∈ R|J|, F̃ ∈ Rnd , G ∈ R|J|, Q ∈ R|J| by

Ai,j = Ai,j , i, j ∈ J, (22.61a)

Bk,i = Bk,i, k = 0, ..., nd − 1, i ∈ J, (22.61b)

Q̂i = gN (cd−1,i), i ∈ J, (22.61c)

F̃k = Fk −
∑
i∈J

Bk,iQ̂i, k = 0, ..., nd − 1, (22.61d)

Gk,i = Gi +
∑
j∈J

Ai,jQ̂i, i ∈ J, (22.61e)

Qi = Qi, i ∈ J. (22.61f)

Hence, we get the folloeing system of equations for Q and Ũ:

A Q−B
T
Ũ = −G, (22.62a)

−B Q = −F̃. (22.62b)

In general, when A is sparse but not diagonal, it is not beneficial to use the inverse of A in calculations since it
will be a dense matrix. (This is the case in mixed finite element methods.) However, in our case A is diagonal, so
the following calculation makes sense computationally. We can solve for Q by

Q = A
−1

(−G+B
T
Ũ). (22.63)

Hence,

F̃ = B Q = B A
−1

(−G+B
T
Ũ). (22.64)

This translates to

B A
−1

B
T
Ũ = B A

−1
G+ F̃. (22.65)

Using the Cholesky decomposition, we can solve for Ũ. We then calculate Q by substituting Ũ in Equation (22.63).
Finally,

Qi =

{
Q̂i, i ∈ J

Qi, i ∈ J
. (22.66)
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22.3.2 Transient

Formulation 22.14. [Mixed weak formulation for the discrete transient heat equation] The following formulation
is a discrete version of Formulation 21.9. Let:

� d be a positive integer (space dimension);

� K be an oriented quasi-cubical mesh of dimension d representing the material body;

� [K] be the fundamental class of K;

� t0 ∈ R be the initial time;

� I = [t0,∞) be the time-interval where the process occurs;

� f [ET−1] : I → CdK be the internal production rate;

� u0[Θ] ∈ C0K be the initial temperature;

� κ[EL2−DT−1Θ−1] : CD−1K → CD−1K be the thermal conductivity of the material;

� π[EL−DΘ−1] : CdK → CdK be the heat capacity of the material;

� ∂K = ΓD ∪ ΓN be the partition of the boundary of K into Dirichlet (ΓD) and Neumann (ΓN ) regions;

� [ΓD] be the fundamental class of ΓD, where ΓD has the boundary orientation induced from K;

� gD[Θ] : I → C0ΓD be the prescribed temperature on the Dirichlet boundary;

� gN [ET−1] : I → CD−1ΓN be the prescribed flow rate on the Neumann boundary.

define the following operators:

A : CD−1K × (I → CD−1K) → R, A(r, sD−1) := ⟨r, κ−1sD−1⟩K,d−1 [E−1TΘ], (22.67a)

B : CdK × (I → CD−1K) → R, B(vd, r) := ⟨δD−1r, v
d⟩K,d [L−D], (22.67b)

C : CdK × (I → CdK) → R, C(vd, wd) := ⟨πwd, vd⟩K,d [EL−2dΘ−1], (22.67c)

G : CD−1K → R, G(r) := (trΓD,d−1 r ⌣ gD)[ΓD] [Θ], (22.67d)

F : CdK → R, F (vd) := ⟨f, vd⟩K,d [ET−1L−D]. (22.67e)

Our unknowns are:

� q[ET−1] : I → CD−1K (heat flow rate);

� ũ[ΘLd] : I → CdK (dual temperature).

We are solving the following problem for q and ũ:

∀r[ET−1] ∈ Ker trΓN ,d−1, A(r, q)−BT (r, ũ) = −G(r) [ET−1Θ], (22.68a)

∀vd[ΘLd] ∈ CdK, −B(vd, q)− C(vd,
∂ũ

∂t
) = −F (vd) [ET−1Θ], (22.68b)

trΓN ,d−1 q = gN [ET−1], (22.68c)

ũ(t0) = ⋆K,0u0 [ΘLd]. (22.68d)

The temperature u[Θ] : I → C0K is calculated in the post-processing phase by the formula

u(t, c0) :=


u0(c0), t = t0

(⋆dũ)(t, x), t > t0 and c0 /∈ (ΓD)0

gD(t, c0), t0 > 0 and c0 ∈ (ΓD)0

. (22.69)

Discussion 22.15. We are going to derive a solution to Formulation 22.14 using the trapezoidal rule for time
integration. We will assume that the heat capacity π̃ is time-independent which will allow us to rearrange the time
derivative:

C(w̃,
∂ũ

∂t
) =

d

dt
C(w̃, ũ). (22.70)

For further simplicity we will also assume that all the rest input data (heat source, thermal conductivity, boundary
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conditions) are also time-independent. We can then integrate the equation (the conservation law)

−B(w̃, q)− d

dt
C(w̃, ũ) = −F (w̃) (22.71)

with respect to t in the interval [α, β] ⊂ I to get

−B(w̃,

∫ β

α

q dt)− (C(w̃, ũ(β))− C(w̃, ũ(α))) = −(β − α)F (w̃). (22.72)

If we partition I into segements with size τ with moments of time {ts := t0 + τs}s≥0, and if we denote

qs := q(ts), s ≥ 0, (22.73a)

ũs := ũ(ts), s ≥ 0, (22.73b)

we get

−τ
2
(B(w̃, qs) +B(w̃, qs+1))− (C(w̃, ũs+1)− C(w̃, ũs)) = −τF (w̃). (22.74)

By multiplying the above equation with 2/τ and rearranging we get:

−B(w̃, qs+1)− 2

τ
C(w̃, ũs+1) = −2F (w̃) +B(w̃, qs)− 2

τ
C(w̃, ũs). (22.75)

At step 0 we calculate initial data as

q0 = (−κ ⋆1 δ0)(u0), (22.76a)

ũ0 = ⋆0u0. (22.76b)

At any step s > 0 we get the following system for (qs, ũs) ∈ CD−1K × CDK:

∀r[ET−1] ∈ Ker trΓN ,D−1, A(r, q
s)−BT (r, ũs) = −G(r), (22.77a)

∀w̃[ΘLD] ∈ CDK, −B(w̃, qs)− 2

τ
C(w̃, ũs) = −2F (w̃) +B(w̃, qs−1)− 2

τ
C(w̃, ũs−1), (22.77b)

trΓN ,d−1 q
s = gN . (22.77c)

Let

J := {i ∈ {0, ..., nD−1} | cd−1,i ∈ (ΓN )D−1} , (22.78a)

J := {0, ..., nD−1} \ J. (22.78b)

Initial conditions give us Q0 and U0. Denote the matrices A, B, C and vectors Qs, Us, F, G of the corresponding
operators in standard bases. Let s > 0. We get the following system for Qs and Us:

nD−1−1∑
j=0

Ai,jQ
s
j −

nd−1∑
k=0

(BT )i,kU
s
k = −Gi, i ∈ J, (22.79a)

−
nD−1−1∑

i=0

Bk,iQ
s − 2

τ
(CUs)k = −2Fk +BQs−1 − 2

τ
CUs−1

k , k ∈ {0, ..., nd − 1}, (22.79b)

Qs
i = gN (cd−1,i), i ∈ J. (22.79c)

The system can be rewritten as:

∑
j∈J

Ai,jQ
s
j −

nd−1∑
k=0

(BT )i,kU
s
k = −Gi −

∑
j∈J

Ai,jgN (cd−1,j), i ∈ J, (22.80a)

−
∑
i∈J

Bk,iQ
s
i −

nd−1∑
l=0

2

τ
Ck,lU

s
l = −2Fk +

∑
i∈J

Bk,igN (cd−1,i) +BQs−1 − 2

τ
CUs−1

k , i ∈ J. (22.80b)

Let A be the restriction of A to the rows and colums in J , B be the restristion of B to the colums in J , Q
s
be the

restriction of Qs to the indices in J , F̃ ∈ Rnd be defined as,

F̃k := 2Fk −
∑
i∈J

Bk,igN (cd−1,i), k = 0, ..., nd − 1, (22.81)
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G be the restriction of G to the indices in J (since A is diagonal, G is not modified before restriction). Hence, we
get the restricted system

AQ
s −B

T
Us = −G, (22.82a)

−BQ
s − 2

τ
CUs = −F̃+BQs−1 − 2

τ
CUs−1. (22.82b)

We can solve for Q
s
as follows:

Q
s
= A

−1
(−G+B

T
Us) = −P+RUs, (22.83)

where we have denoted

P := A
−1

G, (22.84)

R := A
−1

B
T
. (22.85)

This means that

−BQ
s − 2

τ
CUs = −BA

−1
(−G+B

T
Us)− 2

τ
CUs = −(BA

−1
B

T
+

2

τ
C)Us +BA

−1
G. (22.86)

Define the left-hand side matrix Nτ ∈Mnd×nd
(R),

Nτ := BA
−1

B
T
+

2

τ
C. (22.87)

Hence, the conversation law becomes

NτU
s = F̃+BA

−1
G−BQs−1 +

2

τ
CUs−1. (22.88)

Define the constant right-hand side vector Z ∈ Rnd ,

Z := BA
−1

G+ F̃ = BP+ F̃. (22.89)

This leads to the following linear nd × nd system:

NτU
s = Z−BQs−1 +

2

τ
CUs−1. (22.90)

Define

Vτ := N−1
τ Z, (22.91)

Ys
τ := −BQs−1 +

2

τ
CUs−1, (22.92)

Ws
τ := N−1

τ Ys
τ . (22.93)

To find Vτ and Ws
τ we first find the Cholesky decomposition of Nτ :

Nτ = LτL
T
τ . (22.94)

Hence,

Us = N−1
τ (Z−BQs +

2

τ
CUs) = Vτ +Ws

τ . (22.95)

Summarasing, we get the following algorithmic procedure.

Algorithm 22.16 (Algorithm for solving the transient mixed weak formulation for the discrete heat transfer
phenomenon using trapezoidal rule for time integration, assuming time-independent input data). Let:

� Let D be a positive integer (space dimension);

� K be an oriented quasi-cubical mesh of dimension D representing the material body;

� [K] be the fundamental class of K;

� t0[T ] ∈ R be the initial time;
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� τ [T ] ∈ R+ be the time step;

� f [ET−1] ∈ CDK be the internal production rate;

� u0[Θ] ∈ C0K be the initial temperature;

� π[EL−DΘ−1] : I × CDK → CDK be the heat capacity of the material;

� κ[EL2−DT−1Θ−1] : CD−1K → CD−1K be the thermal conductivity of the material;

� ∂K = ΓD ∪ ΓN be the partition of the boundary of K into Dirichlet (ΓD) and Neumann (ΓN ) regions;

� [ΓD] be the fundamental class of ΓD, where ΓD has the boundary orientation induced from K;

� gD[Θ] ∈ C0ΓD be the prescribed temperature on the Dirichlet boundary;

� gN [ET−1] ∈ CD−1ΓN be the prescribed flow rate on the Neumann boundary.

Our algorithm has 3 phases.

1. Time-independent phase. Calculate:

� np := |Kp|, p = D − 1 and p = D;

� the diagonal matrix A ∈MnD−1×nD−1
(R),

Ai,j := ⟨cD−1,j , κ−1cD−1,i⟩K,D−1, i, j = 0, ..., nD−1 − 1; (22.96)

� the sparse matrix B ∈Mnd×nD−1
(R),

Bk,i := ⟨δD−1c
D−1,i, cD,k⟩K,D, i = 0, ..., nD−1 − 1, k = 0, ..., nd − 1; (22.97)

� the diagonal matrix C ∈Mnd×nd
(R),

Ck,l := ⟨πcD,l, cD,k⟩K,D, k, l = 0, ..., nd − 1; (22.98)

� the (sparse) vector G ∈ RnD−1 ,

Gi := (trΓD,D−1 c
D−1,i ⌣ gD)[ΓD], i = 0, ..., nD−1 − 1; (22.99)

� the vector F ∈ Rnd ,

Fk := ⟨f, cD,k⟩K,D, k = 0, ..., nd − 1; (22.100)

� the sets

J := {i ∈ {0, ..., nD−1} | cD−1,i ∈ (ΓN )D−1} , (22.101a)

J := {0, ..., nD−1} \ J ; (22.101b)

� the restricted diagonal matrix A ∈ M|J|×|J|(R) constructed out of A with rows and columns in J

removed;

� the restricted sparse matrix B ∈Mnd×|J|(R) constructed out of B with columns in J removed;

� the modified and restricted vector G ∈ R|J|,

Gi := Gi +
∑
j∈J

Ai,jgN (cD−1,j), i ∈ J (22.102)

(in our case A is diagonal and so for all i ∈ J we get Gi = Gi, i.e., no modification);

� the modified vector F̃ ∈ Rnd ,

F̃k := 2Fk −
∑
i∈J

Bk,igN (cD−1,i), k = 0, ..., nd − 1; (22.103)

� the left-hand side matrix Nτ ∈Mnd×nd
(R),

Nτ := BA
−1

B
T
+

2

τ
C; (22.104)
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� the lower-triangular positive definite sparse matrix Lτ ∈ Mnd×nd
(R) realising the Cholesky decomposi-

tion

Nτ = LτL
T
τ ; (22.105)

� the time-independent part of the heat flow rate P ∈ R|J|,

P := A
−1

G; (22.106)

� the time-independent matrix multiplier R ∈M|J|×nd
(R),

R := A
−1

B
T
; (22.107)

� the constant right-hand side vector Z ∈ Rnd ,

Z := BP+ F̃; (22.108)

� the time-independent part of the dual temperature Vτ ∈ Rnd ,

Vτ := N−1
τ Z = L−T

τ L−1
τ Z (22.109)

(calculated with forward and back substitution);

� the initial cooefficients U0 ∈ Rnd of the dual temperature, and Q0 ∈ RnD−1 of the heat flow rate:

Q0
i := (flow rate(u0))i, i = 0, ..., nD−1 − 1, (22.110a)

U0
k := (⋆0u0)k, k = 0, ..., nd − 1. (22.110b)

Allocate memory for the following vectors, to be modified at each step in the looping phase (superscript index
s only shows their time relevance):

� time-dependent part of the right-hand side Ys
τ ∈ Rnd ;

� time-dependent part of the solution Ws
τ ∈ Rnd ;

� the restricted coordinates Q
s+1 ∈ R|J|.

2. Time-dependent (loop) phase. The constant input consists of gN , B, B, C, τ, Lτ , Vτ , P. Temporary

mutable variables include the vectors Ys
τ , Ws

τ , Q
s+1

. The output consists of the coordinates Q of the
heat flow rate, and the coordinates U of dual temperature. Q and U are either pre-allocated as arrays of
size (number_of_time_steps + 1) × np (for p = D − 1 and p = D respectively) and initialized, or are only
initialized, and memory is allocated at each step until some error condition is satisfied (e.g., the relative error
between two consecutive steps becomes below some ε > 0, in which case the system converges to steady-state).

For any s > 0 (until some predefined final moment is reached or some condition for small error is fulfilled),
calculate:

� RHS term Ys
τ :

Ys
τ := −BQs−1 +

2

τ
CUs−1; (22.111)

� solution term Ws
τ :

Ws
τ := N−1

τ Ys
τ = L−T

τ L−1
τ Ys

τ ; (22.112)

(calculated with forward and back substitution);

� the coefficients of the dual temperature Us (stored for all s),

Us := Vτ +Ws
τ ; (22.113)

� the non-Neumann coefficients of the heat flow rate Qs,

Q
s
:= −P+RUs; (22.114)

� the heat flow rate Qs ∈ RnD−1 (stored for all s),

Qs
j :=

{
Q

s

j , j ∈ J

gN (cD−1,j), j ∈ J
. (22.115)
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3. Post-processing. Define the sets

J := {i ∈ {0, ..., n0 − 1} | c0,i ∈ (ΓD)0} , (22.116a)

J := {0, ..., n0 − 1} \ J. (22.116b)

For each time moment ts the coordinates of the temperature us ∈ Rn0 in the standard basis are calculated
by the formula

us
i :=

{
(⋆DUD,s)i, i ∈ J

gD(c0,i), i ∈ J
. (22.117)

23 Examples of diffusion

23.1 Steady-state

Example 23.1. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formulation 21.7,
Formulation 21.10) with input data 2d_d00_p00 in the nomenclature of the C codebase.
Concretely, X = [0, 1]2, κ̃ ≡ 1, f ≡ 0, GD = ∂X, GN = ∅, gD(x, y) = 0.
This problem has the following exact solution:

u ≡0, (23.1a)

q ≡0. (23.1b)

Consider a mesh M for X consisting of 10 × 10 squares (each axis is divided into 10 segments) with Forman
subdivision K (20 × 20 squares). Its potential and flow rate on K consisting of the exact solution and the 3
discussed cochain methods are shown on Figure 2 and Figure 3.

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 2: diffusion/steady_state/continuous_2d_d00_p00 (Example 23.1): solutions for potential

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 3: diffusion/steady_state/continuous_2d_d00_p00 (Example 23.1): solutions for flow rate

Example 23.2. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formulation 21.7,
Formulation 21.10) with input data 2d_d00_p01 in the nomenclature of the C codebase.
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Concretely, X = [0, 1]2, κ̃ ≡ 1, f ≡ 0, GD = {0, 1}× [0, 1], GN = [0, 1]×{0, 1}, gD(x, y) =

{
−100, x = 0

100, x = 1
, gN ≡ 0.

This problem has the following exact solution:

u(x, y) =100(2x− 1), (23.2a)

q(x, y) =− 200 dy. (23.2b)

Consider a meshM for X consisting of 2×2 squares (each axis is divided into 2 segments) with Forman subdivision
K (4 × 4 squares). Its potential and flow rate on K consisting of the exact solution and the 3 discussed cochain
methods are shown on Figure 4 and Figure 5.

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 4: diffusion/steady_state/continuous_2d_d00_p01 (Example 23.2): solutions for potential

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 5: diffusion/steady_state/continuous_2d_d00_p01 (Example 23.2): solutions for flow rate

Example 23.3. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formulation 21.7,
Formulation 21.10) with input data 2d_d00_p02 in the nomenclature of the C codebase.
Concretely, X = [0, 1]2, κ̃ ≡ 1, f = −4 dx ∧ dy, GD = ∂X, GN = ∅, gD(x, y) = x2 + y2.
This problem has the following exact solution:

u(x, y) =x2 + y2, (23.3a)

q(x, y) =2y dx− 2x dy. (23.3b)

Consider a mesh M for X consisting of 10 × 10 squares (each axis is divided into 10 segments) with Forman
subdivision K (20 × 20 squares). Its potential and flow rate on K consisting of the exact solution and the 3
discussed cochain methods are shown on Figure 6 and Figure 7.

Example 23.4. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formulation 21.7,
Formulation 21.10) with input data 2d_d00_p03 in the nomenclature of the C codebase.
Concretely, X = [0, 1]2, κ̃ ≡ 1, f = −2 dx ∧ dy, GD = {0, 1} × [0, 1], GN = [0, 1]× {0, 1}, gD ≡ 0, gN ≡ 0.
This problem has the following exact solution:

u(x, y) =x(x− 1), (23.4a)

q(x, y) =− (2x− 1) dy. (23.4b)

Consider a meshM for X consisting of 2×2 squares (each axis is divided into 2 segments) with Forman subdivision
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(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 6: diffusion/steady_state/continuous_2d_d00_p02 (Example 23.3): solutions for potential

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 7: diffusion/steady_state/continuous_2d_d00_p02 (Example 23.3): solutions for flow rate

K (4 × 4 squares). Its potential and flow rate on K consisting of the exact solution and the 3 discussed cochain
methods are shown on Figure 8 and Figure 9.

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 8: diffusion/steady_state/continuous_2d_d00_p03 (Example 23.4): solutions for potential

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 9: diffusion/steady_state/continuous_2d_d00_p03 (Example 23.4): solutions for flow rate
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Example 23.5. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formulation 21.7,
Formulation 21.10) with input data 2d_d00_p04 in the nomenclature of the C codebase.
Concretely, X = [0, 1]2, κ̃ ≡ 1, f = −4 dx ∧ dy, GD = {0, 1} × [0, 1], GN = [0, 1] × {0, 1}, gD(x, y) = y(y − 1),

gN (x, y) = (2y − 1) dx =

{
−dx, y = 0

dx, y = 1
.

This problem has the following exact solution:

u(x, y) =x(x− 1) + y(y − 1), (23.5a)

q(x, y) =(2y − 1) dx− (2x− 1) dy. (23.5b)

Consider a meshM for X consisting of 5×5 squares (each axis is divided into 5 segments) with Forman subdivision
K (10× 10 squares). Its potential and flow rate on K consisting of the exact solution and the 3 discussed cochain
methods are shown on Figure 10 and Figure 11.

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 10: diffusion/steady_state/continuous_2d_d00_p04 (Example 23.5): solutions for potential

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 11: diffusion/steady_state/continuous_2d_d00_p04 (Example 23.5): solutions for flow rate

Example 23.6. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formulation 21.7,
Formulation 21.10) with input data 2d_d00_p05 in the nomenclature of the C codebase.
Concretely, X = [0, 1]2, κ̃ ≡ 1, f(x, y) = sin(πx) sin(πy) dx ∧ dy, GD = ∂X, GN = ∅, gD ≡ 0.
This problem has the following exact solution:

u(x, y) =
sin(πx) sin(πy)

2π2
, (23.6a)

q(x, y) =
1

2π
((sin(πx) cos(πy) dx− sin(πy) cos(πx) dy)). (23.6b)

Consider a meshM for X consisting of 5×5 squares (each axis is divided into 5 segments) with Forman subdivision
K (10× 10 squares). Its potential and flow rate on K consisting of the exact solution and the 3 discussed cochain
methods are shown on Figure 12 and Figure 13.

Example 23.7. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formulation 21.7,
Formulation 21.10) with input data 2d_d01_p00 in the nomenclature of the C codebase.
Concretely, X = polygon((−5, 0), (0,−5), (5, 0), (0, 5), κ̃ ≡ 6, f ≡ 0, GD = line((−5, 0), (0,−5)) ∪ line((5, 0), (0, 5)),
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(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 12: diffusion/steady_state/continuous_2d_d00_p05 (Example 23.6): solutions for potential

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 13: diffusion/steady_state/continuous_2d_d00_p05 (Example 23.6): solutions for flow rate

GN = line((0,−5), (5, 0)) ∪ line((0, 5), (−5, 0)), gD(x, y) =

{
100, (x, y) ∈ line((−5, 0), (0,−5))

0, (x, y) ∈ line((5, 0), (0, 5))
, gN ≡ 0.

This problem has the following exact solution:

u(x, y) =50(1− (x+ y)/5), (23.7a)

q(x, y) =60(−dx+ dy). (23.7b)

Consider a meshM for X consisting of 4×4 squares (each axis is divided into 4 segments) with Forman subdivision
K (8 × 8 squares). Its potential and flow rate on K consisting of the exact solution and the 3 discussed cochain
methods are shown on Figure 14 and Figure 15.

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 14: diffusion/steady_state/continuous_2d_d01_p00 (Example 23.7): solutions for potential

Example 23.8. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formulation 21.7,
Formulation 21.10) with input data 2d_d02_p00 in the nomenclature of the C codebase.
Concretely, X = [0, 20] × [0, 15], κ̃ ≡ 6, f ≡ 0, GD = {0, 20} × [0, 15], GN = [0, 20] × {0, 15}, gD(x, y) ={
100, x = 0

0, x = 20
, gN ≡ 0.
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(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 15: diffusion/steady_state/continuous_2d_d01_p00 (Example 23.7): solutions for flow rate

This problem has the following exact solution:

u(x, y) =5(20− x), (23.8a)

q(x, y) =30 dy. (23.8b)

For this problem I use a mesh M generated by Neper with Forman subdivision K. Its potential and flow rate on
K consisting of the exact solution and the 3 discussed cochain methods are shown on Figure 16 and Figure 17.

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 16: diffusion/steady_state/continuous_2d_d02_p00 (Example 23.8): solutions for potential

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 17: diffusion/steady_state/continuous_2d_d02_p00 (Example 23.8): solutions for flow rate

Example 23.9. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formulation 21.7,
Formulation 21.10) with input data 2d_d02_p01 in the nomenclature of the C codebase.
Concretely, X = [0, 20] × [0, 15], κ̃ ≡ 6, f ≡ 0, GD = {0, 20} × [0, 15], GN = [0, 20] × {0, 15}, gD(x, y) ={
0, x = 0

100, x = 20
, gN ≡ 0.

This problem has the following exact solution:

u(x, y) =5x, (23.9a)

q(x, y) =− 30 dy. (23.9b)
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For this problem I use a mesh M generated by Neper with Forman subdivision K. Its potential and flow rate on
K consisting of the exact solution and the 3 discussed cochain methods are shown on Figure 18 and Figure 19.

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 18: diffusion/steady_state/continuous_2d_d02_p01 (Example 23.9): solutions for potential

(a) Exact (b) Primal strong (c) Primal weak (d) Mixed weak

Figure 19: diffusion/steady_state/continuous_2d_d02_p01 (Example 23.9): solutions for flow rate

Example 23.10. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formula-
tion 21.7, Formulation 21.10) with input data 2d_d03_p00 in the nomenclature of the C codebase.
Concretely, X =

{
(x, y) ∈ R2 | x2 + y2 ≤ 1

}
, κ̃ ≡ 1, f = −4 dx ∧ dy, GD = ∂X, GN = ∅, gD ≡ 1.

This problem has the following exact solution:

u(x, y) =x2 + y2, (23.10a)

q(x, y) =2y dx− 2x dy. (23.10b)

Consider a mesh M for X consisting of na rays and nd disks with Forman subdivision K. Its potential and flow
rate on K consisting of the exact solution and the 2 of the discussed cochain methods (no primal strong) are shown
on Figure 20, Figure 21 ((na, nd) = (4, 3)) and Figure 22, Figure 23 ((na, nd) = (18, 10)).

Example 23.11. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formula-
tion 21.7, Formulation 21.10) with input data 2d_d03_p01 in the nomenclature of the C codebase.
Concretely, X =

{
(x, y) ∈ R2 | x2 + y2 ≤ 1

}
, κ̃ ≡ 1, f = −4 dx ∧ dy, GD = {(x, y) ∈ ∂X | x ≥ 0}, GN =

{(x, y) ∈ ∂X | x ≤ 0}, gD ≡ 1, gN (t) = −2 dt (with respect to the (x, y) = (cos(t), sin(t)) coordinates).
This problem has the following exact solution:

u(x, y) =x2 + y2, (23.11a)

q(x, y) =2y dx− 2x dy. (23.11b)

Consider a mesh M for X consisting of na rays and nd disks (na must be even) with Forman subdivision K. Its
potential and flow rate on K consisting of the exact solution and the 2 of the discussed cochain methods (no primal
strong) are shown on Figure 24, Figure 25 ((na, nd) = (4, 3)) and Figure 26, Figure 27 ((na, nd) = (18, 10)).

Example 23.12. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formula-
tion 21.7, Formulation 21.10) with input data 2d_d04_p00 in the nomenclature of the C codebase.
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(a) Exact (b) Primal weak (c) Mixed weak

Figure 20: diffusion/steady_state/continuous_2d_d03_p00 (Example 23.10): solutions for potential on mesh
disk_polar_4_3_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 21: diffusion/steady_state/continuous_2d_d03_p00 (Example 23.10): solutions for flow rate on mesh
disk_polar_4_3_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 22: diffusion/steady_state/continuous_2d_d03_p00 (Example 23.10): solutions for potential on mesh
disk_polar_18_10_forman

Concretely, X =
{
(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z ≥ 0

}
be a hemisphere with the induced metric, κ̃ ≡ 2, f =

6κ(x2 − y2) vol, GD = ∂X, GN = ∅, gD(x, y, z) = x2 − y2.
Use spherical coordinates

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ), 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π. (23.12)
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(a) Exact (b) Primal weak (c) Mixed weak

Figure 23: diffusion/steady_state/continuous_2d_d03_p00 (Example 23.10): solutions for flow rate on mesh
disk_polar_18_10_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 24: diffusion/steady_state/continuous_2d_d03_p01 (Example 23.11): solutions for potential on mesh
disk_polar_4_3_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 25: diffusion/steady_state/continuous_2d_d03_p01 (Example 23.11): solutions for flow rate on mesh
disk_polar_4_3_forman

This problem has the following exact solution:

u(x, y, z) =x2 − y2, (23.13a)

q̃(θ, φ) =2κ(−2 sin θ sin(2φ) dθ − sin θ sin(2θ) cos(2φ) dφ). (23.13b)

Consider a meshM for X consisting of na meridians and nd parallels with Forman subdivision K. Its potential and

59



(a) Exact (b) Primal weak (c) Mixed weak

Figure 26: diffusion/steady_state/continuous_2d_d03_p01 (Example 23.11): solutions for potential on mesh
disk_polar_18_10_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 27: diffusion/steady_state/continuous_2d_d03_p01 (Example 23.11): solutions for flow rate on mesh
disk_polar_18_10_forman

flow rate on the xy-projection of K consisting of the exact solution and the 2 of the discussed cochain methods (no
primal strong) are shown on Figure 28, Figure 29 ((na, nd) = (4, 3)) and Figure 30, Figure 31 ((na, nd) = (6, 6)).

(a) Exact (b) Primal weak (c) Mixed weak

Figure 28: diffusion/steady_state/continuous_2d_d04_p00 (Example 23.12): solutions for potential on mesh
hemisphere_polar_4_3_forman
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(a) Exact (b) Primal weak (c) Mixed weak

Figure 29: diffusion/steady_state/continuous_2d_d04_p00 (Example 23.12): solutions for flow rate on mesh
hemisphere_polar_4_3_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 30: diffusion/steady_state/continuous_2d_d04_p00 (Example 23.12): solutions for potential on mesh
hemisphere_polar_6_6_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 31: diffusion/steady_state/continuous_2d_d04_p00 (Example 23.12): solutions for flow rate on mesh
hemisphere_polar_6_6_forman

Example 23.13. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formula-
tion 21.7, Formulation 21.10) with input data 2d_d04_p01 in the nomenclature of the C codebase.
Concretely, X =

{
(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z ≥ 0

}
be a hemisphere with the induced metric, κ̃ ≡ 2, f =

6κ(x2 − y2) vol, GD = {(x, y, z) ∈ ∂X | y ≤ 0}, GN = {(x, y, z) ∈ ∂X | y ≥ 0}, gD(x, y, z) = x2 − y2, gN ≡ 0.
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Use spherical coordinates

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ), 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π. (23.14)

This problem has the following exact solution:

u(x, y, z) =x2 − y2, (23.15a)

q̃(θ, φ) =2κ(−2 sin θ sin(2φ) dθ − sin θ sin(2θ) cos(2φ) dφ). (23.15b)

Consider a meshM for X consisting of na meridians and nd parallels with Forman subdivision K. Its potential and
flow rate on the xy-projection of K consisting of the exact solution and the 2 of the discussed cochain methods (no
primal strong) are shown on Figure 32, Figure 33 ((na, nd) = (4, 3)) and Figure 34, Figure 35 ((na, nd) = (6, 6)).

(a) Exact (b) Primal weak (c) Mixed weak

Figure 32: diffusion/steady_state/continuous_2d_d04_p01 (Example 23.13): solutions for potential on mesh
hemisphere_polar_4_3_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 33: diffusion/steady_state/continuous_2d_d04_p01 (Example 23.13): solutions for flow rate on mesh
hemisphere_polar_4_3_forman

Example 23.14. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formula-
tion 21.7, Formulation 21.10) with input data 2d_d04_p02 in the nomenclature of the C codebase.
Let X =

{
(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z ≥ 0

}
be a hemisphere with the induced metric. Use spherical coordi-

nates

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ), 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π. (23.16)

The input data is given in spherical coordinates as follows: κ̃ ≡ 2, f̃(θ, ϕ) = −κ cos θ dθ ∧ dϕ, GD = ∂X, GN = ∅,
g̃D(θ, ϕ) = π/2.
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(a) Exact (b) Primal weak (c) Mixed weak

Figure 34: diffusion/steady_state/continuous_2d_d04_p01 (Example 23.13): solutions for potential on mesh
hemisphere_polar_6_6_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 35: diffusion/steady_state/continuous_2d_d04_p01 (Example 23.13): solutions for flow rate on mesh
hemisphere_polar_6_6_forman

This problem has the following exact solution:

u(θ, ϕ) =θ, (23.17a)

q̃(θ, φ) =− κ sin θ dϕ (23.17b)

Consider a meshM for X consisting of na meridians and nd parallels with Forman subdivision K. Its potential and
flow rate on the xy-projection of K consisting of the exact solution and the 2 of the discussed cochain methods (no
primal strong) are shown on Figure 36, Figure 37 ((na, nd) = (4, 3)) and Figure 38, Figure 39 ((na, nd) = (6, 6)).

Example 23.15. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formula-
tion 21.7, Formulation 21.10) with input data 2d_d04_p03 in the nomenclature of the C codebase.
Let X =

{
(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z ≥ 0

}
be a hemisphere with the induced metric. Use spherical coordi-

nates

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ), 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π. (23.18)

The input data is given in spherical coordinates as follows: κ̃ ≡ 2, f̃(θ, ϕ) = −κ cos θ dθ ∧ dϕ, GD =
{(x, y, z) ∈ ∂X | y ≤ 0}, GN = {(x, y, z) ∈ ∂X | y ≥ 0}, g̃D(θ, ϕ) = π/2, g̃N (θ, ϕ) = −κ dϕ.
This problem has the following exact solution:

u(θ, ϕ) =θ, (23.19a)

q̃(θ, φ) =− κ sin θ dϕ (23.19b)

Consider a meshM for X consisting of na meridians and nd parallels with Forman subdivision K. Its potential and
flow rate on the xy-projection of K consisting of the exact solution and the 2 of the discussed cochain methods (no
primal strong) are shown on Figure 40, Figure 41 ((na, nd) = (4, 3)) and Figure 42, Figure 43 ((na, nd) = (6, 6)).
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(a) Exact (b) Primal weak (c) Mixed weak

Figure 36: diffusion/steady_state/continuous_2d_d04_p02 (Example 23.14): solutions for potential on mesh
hemisphere_polar_4_3_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 37: diffusion/steady_state/continuous_2d_d04_p02 (Example 23.14): solutions for flow rate on mesh
hemisphere_polar_4_3_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 38: diffusion/steady_state/continuous_2d_d04_p02 (Example 23.14): solutions for potential on mesh
hemisphere_polar_6_6_forman

Example 23.16. Consider the steady-state continuous heat transport problem (Formulation 21.4, Formula-
tion 21.7, Formulation 21.10) with input data 2d_parallelogram_20_15_degrees_45_p00 in the nomenclature
of the C codebase.
Concretely, a =

√
15, X = Polygon((0, 0), (20, 0), (20 + a, a), (a, a)), κ̃ ≡ 1, f ≡ 0, GD =

Line((0, 0), (a, a)) ∪ Line((20, 0), (20 + a, a)), GN = Line((0, 0), (20, 0)) ∪ Line((a, a), (20 + a, a)), gD(x, y) =
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(a) Exact (b) Primal weak (c) Mixed weak

Figure 39: diffusion/steady_state/continuous_2d_d04_p02 (Example 23.14): solutions for flow rate on mesh
hemisphere_polar_6_6_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 40: diffusion/steady_state/continuous_2d_d04_p03 (Example 23.15): solutions for potential on mesh
hemisphere_polar_4_3_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 41: diffusion/steady_state/continuous_2d_d04_p03 (Example 23.15): solutions for flow rate on mesh
hemisphere_polar_4_3_forman

{
20, (x, y) ∈ Line((0, 0), (a, a))

0, (x, y) ∈ Line((20, 0), (20 + a, a))
, gN = dx.
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(a) Exact (b) Primal weak (c) Mixed weak

Figure 42: diffusion/steady_state/continuous_2d_d04_p03 (Example 23.15): solutions for potential on mesh
hemisphere_polar_6_6_forman

(a) Exact (b) Primal weak (c) Mixed weak

Figure 43: diffusion/steady_state/continuous_2d_d04_p03 (Example 23.15): solutions for flow rate on mesh
hemisphere_polar_6_6_forman

This problem has the following exact solution:

u(x, y) =20− (x− y), (23.20a)

q =dx+ dy. (23.20b)

Consider a regular mesh M for X consisting of 5× 3 parallelograms with Forman subdivision K (10 × 6 parallel-
ograms). Its potential and flow rate on K consisting of the exact solution and the mixed weak method are shown
on Figure 44 and Figure 45.

(a) Exact (b) Primal weak (c) Mixed weak

Figure 44: diffusion/steady_state/continuous_2d_parallelogram_20_15_degrees_45_p00 (Example 23.16):
solutions for potential
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(a) Exact (b) Primal weak (c) Mixed weak

Figure 45: diffusion/steady_state/continuous_2d_parallelogram_20_15_degrees_45_p00 (Example 23.16):
solutions for flow rate

23.2 Transient

Example 23.17. Consider the transient continuous heat transport problem (Formulation 21.3, Formulation 21.6,
Formulation 21.9) with input data 2d_d00_p00 in the nomenclature of the C codebase.

Concretely, X = [0, 1]2, π̃ ≡ 1, κ̃ ≡ 1, u0(x, y) =

{
100, (x, y) = (0.5, 0.5)

0, else
, f ≡ 0, GD = ∂X, GN = ∅,

gD(x, y) = 0.
This problem has the following exact solution in steady-state:

u ≡0, (23.21a)

q ≡0. (23.21b)

Consider a meshM for X consisting of 2×2 squares (each axis is divided into 2 segments) with Forman subdivision
K (4 × 4 squares). Its potential and flow rate on K consisting of the 3 discussed cochain methods are shown on
Figure 46 and Figure 47.

(a) Primal strong, 1 (b) Primal strong, 101 (c) Primal strong, 201 (d) Primal strong, 301

(e) Primal weak, 1 (f) Primal weak, 101 (g) Primal weak, 201 (h) Primal weak, 301

(i) Mixed weak, 1 (j) Mixed weak, 101 (k) Mixed weak, 201 (l) Mixed weak, 301

Figure 46: diffusion/transient/continuous_2d_d00_p00 (Example 23.17): solutions for potential

67



(a) Primal strong, 1 (b) Primal strong, 101 (c) Primal strong, 201 (d) Primal strong, 301

(e) Primal weak, 1 (f) Primal weak, 101 (g) Primal weak, 201 (h) Primal weak, 301

(i) Mixed weak, 1 (j) Mixed weak, 101 (k) Mixed weak, 201 (l) Mixed weak, 301

Figure 47: diffusion/transient/continuous_2d_d00_p00 (Example 23.17): solutions for flow rate

Example 23.18. Consider the transient continuous heat transport problem (Formulation 21.3, Formulation 21.6,
Formulation 21.9) with input data 2d_d00_p01 in the nomenclature of the C codebase.

Concretely, X = [0, 1]2, π̃ ≡ 4, κ̃ ≡ 1, u0(x, y) =

{
100, x = 1

−100, else
, f ≡ 0, GD = {0, 1} × [0, 1], GN = [0, 1]× {0, 1},

gD(x, y) =

{
100, x = 1

−100, x = 0
, gN ≡ 0.

This problem has the following exact solution in steady-state:

u(x, y) =100(2x− 1), (23.22a)

q =− 200 dy. (23.22b)

Consider a meshM for X consisting of 5×5 squares (each axis is divided into 5 segments) with Forman subdivision
K (10× 10 squares). Its potential and flow rate on K consisting of the 3 discussed cochain methods are shown on
Figure 48 and Figure 49.

Example 23.19. Consider the transient continuous heat transport problem (Formulation 21.3, Formulation 21.6,
Formulation 21.9) with input data 2d_d00_p02 in the nomenclature of the C codebase.
Concretely, X = [0, 1]2, π̃ ≡ 1, κ̃ ≡ 1, u0(x, y) = x2 + y2, f ≡ −4 dx ∧ dy, GD = ∂X, GN = ∅, gD(x, y) = x2 + y2.
This problem is in steady-state mode from the beginning with the following exact solution:

u(x, y) =x2 + y2, (23.23a)

q(x, y) =2y dx− 2x dy. (23.23b)

Consider a meshM for X consisting of 2×2 squares (each axis is divided into 2 segments) with Forman subdivision
K (4 × 4 squares). Its potential and flow rate on K consisting of the 3 discussed cochain methods are shown on
Figure 50 and Figure 51.

68



(a) Primal strong, 1 (b) Primal strong, 501 (c) Primal strong, 1001 (d) Primal strong, 1501

(e) Primal weak, 1 (f) Primal weak, 501 (g) Primal weak, 1001 (h) Primal weak, 1501

(i) Mixed weak, 1 (j) Mixed weak, 501 (k) Mixed weak, 1001 (l) Mixed weak, 1501

Figure 48: diffusion/transient/continuous_2d_d00_p01 (Example 23.18): solutions for potential

(a) Primal strong, 1 (b) Primal strong, 501 (c) Primal strong, 1001 (d) Primal strong, 1501

(e) Primal weak, 1 (f) Primal weak, 501 (g) Primal weak, 1001 (h) Primal weak, 1501

(i) Mixed weak, 1 (j) Mixed weak, 501 (k) Mixed weak, 1001 (l) Mixed weak, 1501

Figure 49: diffusion/transient/continuous_2d_d00_p01 (Example 23.18): solutions for flow rate
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(a) Primal strong, 1 (b) Primal strong, 334 (c) Primal strong, 667 (d) Primal strong, 1001

(e) Primal weak, 1 (f) Primal weak, 334 (g) Primal weak, 667 (h) Primal weak, 1001

(i) Mixed weak, 1 (j) Mixed weak, 334 (k) Mixed weak, 667 (l) Mixed weak, 1001

Figure 50: diffusion/transient/continuous_2d_d00_p02 (Example 23.19): solutions for potential

(a) Primal strong, 1 (b) Primal strong, 334 (c) Primal strong, 667 (d) Primal strong, 1001

(e) Primal weak, 1 (f) Primal weak, 334 (g) Primal weak, 667 (h) Primal weak, 1001

(i) Mixed weak, 1 (j) Mixed weak, 334 (k) Mixed weak, 667 (l) Mixed weak, 1001

Figure 51: diffusion/transient/continuous_2d_d00_p02 (Example 23.19): solutions for flow rate
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Example 23.20. Consider the transient continuous heat transport problem (Formulation 21.3, Formulation 21.6,
Formulation 21.9) with input data 2d_d00_p03 in the nomenclature of the C codebase.
Concretely, X = [0, 1]2, π̃ ≡ 4, κ̃ ≡ 1, u0(x, y) = 0, f ≡ −2 dx ∧ dy, GD = {0, 1} × [0, 1], GN = [0, 1] × {0, 1},
gD(x, y) = 0, gN ≡ 0.
This problem has the following exact solution in steady-state:

u(x, y) =x(x− 1), (23.24a)

q(x, y) =− (2x− 1) dy. (23.24b)

Consider a meshM for X consisting of 5×5 squares (each axis is divided into 5 segments) with Forman subdivision
K (10× 10 squares). Its potential and flow rate on K consisting of the 3 discussed cochain methods are shown on
Figure 52 and Figure 53.

(a) Primal strong, 1 (b) Primal strong, 834 (c) Primal strong, 1667 (d) Primal strong, 2501

(e) Primal weak, 1 (f) Primal weak, 834 (g) Primal weak, 1667 (h) Primal weak, 2501

(i) Mixed weak, 1 (j) Mixed weak, 834 (k) Mixed weak, 1667 (l) Mixed weak, 2501

Figure 52: diffusion/transient/continuous_2d_d00_p03 (Example 23.20): solutions for potential

Example 23.21. Consider the transient continuous heat transport problem (Formulation 21.3, Formulation 21.6,
Formulation 21.9) with input data 2d_d00_p04 in the nomenclature of the C codebase.
Concretely, X = [0, 1]2, π̃ ≡ 4, κ̃ ≡ 1, u0(x, y) = y(y− 1), f ≡ −4 dx∧ dy, GD = {0, 1}× [0, 1], GN = [0, 1]×{0, 1},

gD(x, y) = y(y − 1), gN (x, y) = (2y − 1) dx =

{
−dx, y = 0

dx, y = 1
.

This problem has the following exact solution in steady-state:

u(x, y) =x(x− 1) + y(y − 1), (23.25a)

q(x, y) =(2y − 1) dx− (2x− 1) dy. (23.25b)

Consider a meshM for X consisting of 5×5 squares (each axis is divided into 5 segments) with Forman subdivision
K (10× 10 squares). Its potential and flow rate on K consisting of the 3 discussed cochain methods are shown on
Figure 54 and Figure 55.
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(a) Primal strong, 1 (b) Primal strong, 834 (c) Primal strong, 1667 (d) Primal strong, 2501

(e) Primal weak, 1 (f) Primal weak, 834 (g) Primal weak, 1667 (h) Primal weak, 2501

(i) Mixed weak, 1 (j) Mixed weak, 834 (k) Mixed weak, 1667 (l) Mixed weak, 2501

Figure 53: diffusion/transient/continuous_2d_d00_p03 (Example 23.20): solutions for flow rate

(a) Primal strong, 1 (b) Primal strong, 834 (c) Primal strong, 1667 (d) Primal strong, 2501

(e) Primal weak, 1 (f) Primal weak, 834 (g) Primal weak, 1667 (h) Primal weak, 2501

(i) Mixed weak, 1 (j) Mixed weak, 834 (k) Mixed weak, 1667 (l) Mixed weak, 2501

Figure 54: diffusion/transient/continuous_2d_d00_p04 (Example 23.21): solutions for potential
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(a) Primal strong, 1 (b) Primal strong, 834 (c) Primal strong, 1667 (d) Primal strong, 2501

(e) Primal weak, 1 (f) Primal weak, 834 (g) Primal weak, 1667 (h) Primal weak, 2501

(i) Mixed weak, 1 (j) Mixed weak, 834 (k) Mixed weak, 1667 (l) Mixed weak, 2501

Figure 55: diffusion/transient/continuous_2d_d00_p04 (Example 23.21): solutions for flow rate

Example 23.22. Consider the transient continuous heat transport problem (Formulation 21.3, Formulation 21.6,
Formulation 21.9) with input data 2d_d00_p05 in the nomenclature of the C codebase.
Concretely, X = [0, 1]2, π̃ ≡ 0, κ̃ ≡ 1, u0(x, y) = sin(πx) sin(πy), f ≡ 0, GD = ∂X, GN = ∅, gD(x, y) = 0.
This problem has the following exact solution:

u(t, x, y) =e−2πt2 sin(πx) sin(πy) (23.26a)

q(t, x, y) =πe−2πt2(sin(πx) cos(πy) dx− cos(πx) sin(πy) dy). (23.26b)

Consider a meshM for X consisting of 5×5 squares (each axis is divided into 5 segments) with Forman subdivision
K (10× 10 squares). Its potential and flow rate on K consisting of the 3 discussed cochain methods are shown on
Figure 56 and Figure 57.

Example 23.23. Consider the transient continuous heat transport problem (Formulation 21.3, Formulation 21.6,
Formulation 21.9) with input data 2d_d01_p00 in the nomenclature of the C codebase.
Concretely, X = polygon((−5, 0), (0,−5), (5, 0), (0, 5), π̃ ≡ 6, κ̃ ≡ 6,

u0(x, y) =

{
100, (x, y) ∈ line((−5, 0), (0,−5))

0, (x, y) ∈ line((5, 0), (0, 5))
, f ≡ 0,

GD = line((−5, 0), (0,−5)) ∪ line((5, 0), (0, 5)), GN = line((0,−5), (5, 0)) ∪ line((0, 5), (−5, 0)),

gD(x, y) =

{
100, (x, y) ∈ line((−5, 0), (0,−5))

0, (x, y) ∈ line((5, 0), (0, 5))
, gN ≡ 0.

This problem has the following exact solution in steady-state:

u(x, y) =50(1− (x+ y)/5), (23.27a)

q(x, y) =60(−dx+ dy). (23.27b)

Consider a meshM for X consisting of 4×4 squares (each axis is divided into 4 segments) with Forman subdivision
K (8 × 8 squares). Its potential and flow rate on K consisting of the 3 discussed cochain methods are shown on
Figure 58 and Figure 59.
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(a) Primal strong, 1 (b) Primal strong, 834 (c) Primal strong, 1667 (d) Primal strong, 2501

(e) Primal weak, 1 (f) Primal weak, 834 (g) Primal weak, 1667 (h) Primal weak, 2501

(i) Mixed weak, 1 (j) Mixed weak, 834 (k) Mixed weak, 1667 (l) Mixed weak, 2501

Figure 56: diffusion/transient/continuous_2d_d00_p05 (Example 23.22): solutions for potential

(a) Primal strong, 1 (b) Primal strong, 834 (c) Primal strong, 1667 (d) Primal strong, 2501

(e) Primal weak, 1 (f) Primal weak, 834 (g) Primal weak, 1667 (h) Primal weak, 2501

(i) Mixed weak, 1 (j) Mixed weak, 834 (k) Mixed weak, 1667 (l) Mixed weak, 2501

Figure 57: diffusion/transient/continuous_2d_d00_p05 (Example 23.22): solutions for flow rate
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(a) Primal strong, 1 (b) Primal strong, 101 (c) Primal strong, 201 (d) Primal strong, 301

(e) Primal weak, 1 (f) Primal weak, 101 (g) Primal weak, 201 (h) Primal weak, 301

(i) Mixed weak, 1 (j) Mixed weak, 101 (k) Mixed weak, 201 (l) Mixed weak, 301

Figure 58: diffusion/transient/continuous_2d_d01_p00 (Example 23.23): solutions for potential

(a) Primal strong, 1 (b) Primal strong, 101 (c) Primal strong, 201 (d) Primal strong, 301

(e) Primal weak, 1 (f) Primal weak, 101 (g) Primal weak, 201 (h) Primal weak, 301

(i) Mixed weak, 1 (j) Mixed weak, 101 (k) Mixed weak, 201 (l) Mixed weak, 301

Figure 59: diffusion/transient/continuous_2d_d01_p00 (Example 23.23): solutions for flow rate
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Example 23.24. Consider the transient continuous heat transport problem (Formulation 21.3, Formulation 21.6,
Formulation 21.9) with input data 2d_d02_p00 in the nomenclature of the C codebase.

Concretely, X = [0, 20] × [0, 15], π̃ ≡ 4, κ̃ ≡ 6, u0(x, y) =

{
100, x = 0

0, x > 0
, f ≡ 0, GD = {0, 20} × [0, 15], GN =

[0, 20]× {0, 15}, gD(x, y) =

{
100, x = 0

0, x = 20
, gN ≡ 0.

This problem has the following exact solution in steady-state:

u(x, y) =5(20− x), (23.28a)

q(x, y) =30 dy. (23.28b)

For this problem I use a mesh M generated by Neper with Forman subdivision K. Its potential and flow rate on
K consisting of the 3 discussed cochain methods are shown on Figure 60 and Figure 61.

(a) Primal strong, 1 (b) Primal strong, 334 (c) Primal strong, 667 (d) Primal strong, 1001

(e) Primal weak, 1 (f) Primal weak, 334 (g) Primal weak, 667 (h) Primal weak, 1001

(i) Mixed weak, 1 (j) Mixed weak, 334 (k) Mixed weak, 667 (l) Mixed weak, 1001

Figure 60: diffusion/transient/continuous_2d_d02_p00 (Example 23.24): solutions for potential

Example 23.25. Consider the transient continuous heat transport problem (Formulation 21.3, Formulation 21.6,
Formulation 21.9) with input data 2d_d02_p01 in the nomenclature of the C codebase.

Concretely, X = [0, 20] × [0, 15], π̃ ≡ 4, κ̃ ≡ 6, u0(x, y) =

{
100, x = 20

0, x < 20
, f ≡ 0, GD = {0, 20} × [0, 15],

GN = [0, 20]× {0, 15}, gD(x, y) =

{
100, x = 20

0, x = 0
, gN ≡ 0.

This problem has the following exact solution in steady-state:

u(x, y) =5x, (23.29a)

q(x, y) =− 30 dy. (23.29b)

For this problem I use a mesh M generated by Neper with Forman subdivision K. Its potential and flow rate on
K consisting of the 3 discussed cochain methods are shown on Figure 62 and Figure 63.
At the moment there are problems with the primal strong method!!!
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(a) Primal strong, 1 (b) Primal strong, 334 (c) Primal strong, 667 (d) Primal strong, 1001

(e) Primal weak, 1 (f) Primal weak, 334 (g) Primal weak, 667 (h) Primal weak, 1001

(i) Mixed weak, 1 (j) Mixed weak, 334 (k) Mixed weak, 667 (l) Mixed weak, 1001

Figure 61: diffusion/transient/continuous_2d_d02_p00 (Example 23.24): solutions for flow rate

(a) Primal strong, 1 (b) Primal strong, 334 (c) Primal strong, 667 (d) Primal strong, 1001

(e) Primal weak, 1 (f) Primal weak, 334 (g) Primal weak, 667 (h) Primal weak, 1001

(i) Mixed weak, 1 (j) Mixed weak, 334 (k) Mixed weak, 667 (l) Mixed weak, 1001

Figure 62: diffusion/transient/continuous_2d_d02_p01 (Example 23.25): solutions for potential
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(a) Primal strong, 1 (b) Primal strong, 334 (c) Primal strong, 667 (d) Primal strong, 1001

(e) Primal weak, 1 (f) Primal weak, 334 (g) Primal weak, 667 (h) Primal weak, 1001

(i) Mixed weak, 1 (j) Mixed weak, 334 (k) Mixed weak, 667 (l) Mixed weak, 1001

Figure 63: diffusion/transient/continuous_2d_d02_p01 (Example 23.25): solutions for flow rate

Example 23.26. Consider the transient continuous heat transport problem (Formulation 21.3, Formulation 21.6,
Formulation 21.9) with input data 2d_d03_p00 in the nomenclature of the C codebase.
Concretely, X =

{
(x, y) ∈ R2 | x2 + y2 ≤ 1

}
, π̃ ≡ 4, κ̃ ≡ 1, u0(x, y) = 2 − (x2 + y2), f ≡ −4 dx ∧ dy, GD = ∂X,

GN = ∅, gD ≡ 1.
This problem has the following exact solution in steady-state:

u(x, y) =x2 + y2, (23.30a)

q(x, y) =2y dx− 2x dy. (23.30b)

Consider a mesh M for X consisting of na rays and nd disks with Forman subdivision K. Its potential and flow
rate on K consisting of the 3 discussed cochain methods for (na, nd) = (4, 3) are shown on Figure 64 and Figure 65.

Example 23.27. Consider the transient continuous heat transport problem (Formulation 21.3, Formulation 21.6,
Formulation 21.9) with input data 2d_d03_p01 in the nomenclature of the C codebase.
Concretely, X =

{
(x, y) ∈ R2 | x2 + y2 ≤ 1

}
, π̃ ≡ 4, κ̃ ≡ 1, u0(x, y) = 2 − (x2 + y2), f ≡ −4 dx ∧ dy,

GD = {(x, y) ∈ ∂X | x ≥ 0}, GN = {(x, y) ∈ ∂X | x ≤ 0}, gD ≡ 1, gN (t) = −2 dt (with respect to the
(x, y) = (cos(t), sin(t)) coordinates).
This problem has the following exact solution in steady-state:

u(x, y) =x2 + y2, (23.31a)

q(x, y) =2y dx− 2x dy. (23.31b)

Consider a mesh M for X consisting of na rays and nd disks with Forman subdivision K. Its potential and flow
rate on K consisting of the 3 discussed cochain methods for (na, nd) = (4, 3) are shown on Figure 66 and Figure 67.
At the moment there are problems with the primal strong method!!!

24 Continuous electromagnetism
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(a) Primal strong, 1 (b) Primal strong, 101 (c) Primal strong, 201 (d) Primal strong, 301

(e) Primal weak, 1 (f) Primal weak, 101 (g) Primal weak, 201 (h) Primal weak, 301

(i) Mixed weak, 1 (j) Mixed weak, 101 (k) Mixed weak, 201 (l) Mixed weak, 301

Figure 64: diffusion/transient/continuous_2d_d03_p00 (Example 23.26): solutions for potential

(a) Primal strong, 1 (b) Primal strong, 101 (c) Primal strong, 201 (d) Primal strong, 301

(e) Primal weak, 1 (f) Primal weak, 101 (g) Primal weak, 201 (h) Primal weak, 301

(i) Mixed weak, 1 (j) Mixed weak, 101 (k) Mixed weak, 201 (l) Mixed weak, 301

Figure 65: diffusion/transient/continuous_2d_d03_p00 (Example 23.26): solutions for flow rate
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(a) Primal strong, 1 (b) Primal strong, 101 (c) Primal strong, 201 (d) Primal strong, 301

(e) Primal weak, 1 (f) Primal weak, 101 (g) Primal weak, 201 (h) Primal weak, 301

(i) Mixed weak, 1 (j) Mixed weak, 101 (k) Mixed weak, 201 (l) Mixed weak, 301

Figure 66: diffusion/transient/continuous_2d_d03_p01 (Example 23.27): solutions for potential

(a) Primal strong, 1 (b) Primal strong, 101 (c) Primal strong, 201 (d) Primal strong, 301

(e) Primal weak, 1 (f) Primal weak, 101 (g) Primal weak, 201 (h) Primal weak, 301

(i) Mixed weak, 1 (j) Mixed weak, 101 (k) Mixed weak, 201 (l) Mixed weak, 301

Figure 67: diffusion/transient/continuous_2d_d03_p01 (Example 23.27): solutions for flow rate
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Discussion 24.1. The quantities participating in the classical electromagnetism are given in Table 1. The
Maxwell’s equations and the Poynting’s theorem are given in Table 2. The linear constitutive laws in the macro-
scopic formulation are given in Table 3. (Note that µ = µ0 and ε = ε0 in the microscopic formulation. Conductivity
is not used there since J is given.)

Table 1: Quantities in electromagnetism with forms

Quantity Variable Spatial domain Definition Dimension

Electric charge Q Ω3M given C

Electric current J Ω2M given (or via constitutive law) T−1C

Electric potential φ Ω0M unknown (gauge freedom) ML2T−2C−1

Magnetic potential A Ω1M unknown (gauge freedom) ML2T−1C−1

Electric field E Ω1M −dφ− ∂A
∂t ML2T−2C−1

Magnetic field B Ω2M d1A ML2T−1C−1

Electric displacement D Ω2M via constitutive law C

Magnetisation H Ω1M via constitutive law T−1C

Poynting form S Ω2M E ∧H ML2T−3

Electric energy form uE Ω3M (E ∧D)/2 ML2T−2

Magnetic energy form uM Ω3M (B ∧H)/2 ML2T−2

Electromagnetic energy form u Ω3M uE + uM ML2T−2

Lorentz force form F Ω2M ⋆1(⋆3Q ∧ E) + ⋆2J ∧ ⋆2B MT−2

Permittivity ε Ω2M → Ω2M material parameter M−1L−3T2C2

Permeability µ Ω2M → Ω2M material parameter MLC−2

Conductivity σ Ω2M → Ω2M material parameter M−1L−3TC2

Table 2: Laws of electromagnetism with forms

Name Equation Domain Dimension

Gauss’s law for electricity d2D = Q Ω3M C

Gauss’s law for magnetism d2B = 0 Ω3M ML2T−1C−1

Faradey’s law of induction ∂B
∂t = −d1E Ω2M ML2T−2C−1

Ampere’s circuital law ∂D
∂t = d1H − J Ω2M T−1C

Conservation of electric charge ∂Q
∂t = −d2J Ω3M T−1C

Poynting’s theorem ∂u
∂t = −d2S − E ∧ J Ω3M ML2T−3

Table 3: Linear constitutive relations in elecromagnetism

Name Equation Domain Dimension

Polarization relation D = ε ⋆1 E Ω2M C

Magnetization relation B = µ ⋆1 H Ω2M ML2T−1C−1

Ohm’s relation J = σ ⋆1 E Ω2M T−1C

Discussion 24.2. Let M be a space domain manifold, I be an interval. In the split space and time approach
quantities in electromagnetism are represented via bundle-vlued functions f ∈ F(I,Ω•M). We will instead formu-
late the laws of electromagnetism in terms of Ω•(I ×M) (or more generally, a 4-dimensional spacetime that is not
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the Cartesian product of space and time). For any p ∈ N we will make use of the following isomorphism:

C∞(I,ΩpM)⊕ C∞(I,Ωp−1M) ≃ Ωp(I ×M) (24.1)

realised by the following map:

ω 7→

{
fπ∗

Mη, ω = fη ∈ C∞(I,ΩpM)

fπ∗
Mη ∧ dt, ω = fη ∈ C∞(I,Ωp−1M).

(24.2)

We form the following pairs and their spacetime versions on Table 4. Consequently, the laws are given on Table 5.
Note that the spacetime formulation is manifestly covariant in the category of Lorentzian 4-manifolds (pseudo-
Riemannian manifolds with (1, 3) signature of the metric).

Table 4: Quantities in spacetime electromagnetism

Quantity Variable Domain Definition Dimension

Spacetime charge Q Ω3(I ×M) Q+ J ∧ dt C

Electromagnetic potential A Ω1(I ×M) φdt+A ML2T−1C−1

Electromagnetic field F Ω2(I ×M) B + E ∧ dt ML2T−1C−1

Electromagnetic displacement D Ω2(I ×M) D +H ∧ dt C

Table 5: Laws of spacetime electromagnetism

Name Equation Domain Dimension

Electromagnetic field is closed d2F = 0 Ω3(I ×M) ML2T−1C−1

Conservation of electric charge: strong d2D = Q Ω3(I ×M) C

Conservation of electric charge: weak d3Q = 0 Ω4(I ×M) C

Electromagnetic form is exact d1A = F Ω2(I ×M) ML2T−1C−1

Constitutive law F = ε ⋆2 D Ω2(I ×M) ML2T−1C−1

25 Discrete elasticity

Discussion 25.1 (Discrete elasticity). Let M be a mesh of dimension 3, K be the Forman subdivision of M . Let
L and F denote length and force measures respectively.
Discrete displacement is represented by

η1[L2] ∈ C1K. (25.1)

Displacement gradient is represented by

ϵ0[1] ∈ C0K, ω2[L2] ∈ C2K. (25.2)

Stress (force) is represented by

τ0[F ] ∈ C0K, τ2[FL2] ∈ C2K. (25.3)

Body force is represented by

b1[F ] ∈ C1K. (25.4)

Let λ, µ[F ] ∈ R be the Lamé parameters. Our model is the following.

ϵ0 = δ⋆1η
1 (volumetric displacement gradient), (25.5a)

ω2 = δ1η
1 (deviatoric displacement gradient), (25.5b)

τ0 = λϵ0 (hydrostatic force), (25.5c)

τ2 = µω2 (deviatoric force), (25.5d)

δ0τ
0 + δ⋆2τ

2 + b1 = 0 (conservation of linear momentum). (25.5e)
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Example 25.2. Consider the problem of a twist of a cylindrical bar described in Section 9.1 of (Hadjesfandiari
2011). Let θ be the constant angle of twist per unit length, λ and µ be the Lame parameters. Let u be the
displacement vector, ϵ be the strain tensor, ω be the rotation tensor, σ be the stress tensor. Then at any point
x = (x1, x2, x3) we have:

u =

−θx2x3
θx1x3

0

 , ϵ =
θ

2

 0 0 −x2
0 0 x1

−x2 x1 0

 , ω =
θ

2

 0 −2x3 −x2
2x3 0 x1
x2 −x1 0

 , σ = µθ

 0 0 −x2
0 0 x1

−x2 x1 0

 . (25.6)

Note that the skew-symmetric matrix ω corresponds to the vector

ω 7→ θ

2
(−x1,−x2, 2x3)T . (25.7)

Let h ∈ R+ and consider a 3D regular grid K of size h. For integers i, j, k, nodes in K have coordinates

x(i,j,k) := (ih, jh, kh). (25.8)

Nodes in K will be denoted by N(i,j,k).
There are three type of edges in K (parallel to the 3 axes) constructed as follows. Let p ∈ {1, 2, 3} and ep be the

p-th unit vector. Denote by E(p)
(i,j,k) the edge starting at N(i,j,k) and ending at N(i,j,k)+ep . In particular, the oriented

boundary of E(1)
(i,j,k) is

∂1E(1)
(i,j,k) = −N(i,j,k) +N(i+1,j,k). (25.9)

Similar computation holds for p = 2 and p = 3.

For p, q ∈ {1, 2, 3}, p < q faces in K are denoted by F (p,q)
(i,j,k) and represent squares starting at N(i,j,k) with basis

vectors going in directions ep and eq. Also use the identification of cochains

F (q,p)
(i,j,k) := −F (p,q)

(i,j,k). (25.10)

For instance, the oriented boundary of F (1,2
(i,j,k) is

∂2F (1,2)
(i,j,k) = −E(1)

(i,j+1,k) + E(1)
(i,j,k) + E(2)

(i+1,j,k) − E(2)
(i,j,k). (25.11)

We will work with the approximation η1 := u.
Let p ∈ {1, 2, 3}. Then for ϵ0 := δ⋆1η

1, using the fact that

η1E(p)
(i,j,k)+ep

= η1E(p)
(i,j,k), (25.12)

we calculate:

ϵ0N(i,j,k) =
1

h2

3∑
p=1

(η1E(p)
(i,j,k) − η1E(p)

(i,j,k)+ep
) = 0. (25.13)

Hence,

τ0 = λϵ0 = 0. (25.14)

Using the computation from Equation (18.11) in each direction, we get

η1E(1)
(i,j,k) =

h

2
θ(−x2x3 − x2x3) = −θhx2x3 = −θjkh3, (25.15a)

η1E(2)
(i,j,k) =

h

2
θ(x1x3 + x1x3) = θhx1x3 = θikh3, (25.15b)

η1E(3)
(i,j,k) =

h

2
θ(0 + 0) = 0. (25.15c)

For ω2 := δ1η
1, using that ϵ(c2) = η1(∂c2), we get:

ω2F (2,3)
(i,j,k) = (−η1E(2)

(i,j,k+1) + η1E(2)
(i,j,k)) + (η1E(3)

(i,j+1,k) − η1E(3)
(i,j,k)) = −θih3 + 0 = −θih3, (25.16a)

ω2F (3,1)
(i,j,k) = (−η1E(3)

(i+1,j,k) + η1E(3)
(i,j,k)) + (η1E(1)

(i,j,k+1) + η1E(1)
(i,j,k)) = 0− θjh3 = −θjh3, (25.16b)

ω2F (1,2)
(i,j,k) = (−η1E(1)

(i,j+1,k) + η1E(1)
(i,j,k)) + (η1E(2)

(i+1,j,k) − η1E(2)
(i,j,k)) = θkh3 + θkh3 = 2θkh3. (25.16c)
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We see the clear correspondence (by a factor of 2h2) to the “flattened” version of ω, Equation (25.7).
We have τ2 = µω2 and hence δ⋆2τ

2 = µδ⋆2ω
2. Then

(δ⋆2τ
2)E(1)

(i,j,k) =
µ

h2
((ω2F (1,2)

(i,j,k) − ω2F (1,2)
(i,j−1,k))− (ω2F (1,3)

(i,j,k) − ω2F (1,3)
(i,j,k−1))) =

µ

h2
(0− 0) = 0, (25.17a)

(δ⋆2τ
2)E(2)

(i,j,k) =
µ

h2
((ω2F (1,2)

(i−1,j,k) − ω2F (1,2)
(i,j,k))− (ω2F (2,3)

(i,j,k) − ω2F (2,3)
(i,j,k−1))) =

µ

h2
(0− 0) = 0, (25.17b)

(δ⋆2τ
2)E(3)

(i,j,k) =
µ

h2
((ω2F (1,3)

(i−1,j,k) − ω2F (1,3)
(i,j,k))− (ω2F (2,3)

(i,j−1,k) − ω2F (2,3)
(i,j,k))) =

µ

h2
(0− 0) = 0. (25.17c)

Hence, δ⋆2τ
2 = 0. With zero body force b1, we get:

δ0τ
0 + δ⋆2τ

2 + b1 = 0 + 0 + 0 = 0. (25.18)
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